An optimal control problem and cost-effectiveness analysis of malaria disease with vertical transmission applied to San Andrés de Tumaco (Colombia)

  • 122 Accesses


In this work, we studied malaria disease in San Andrés de Tumaco-Colombia (Tumaco) using mathematical modeling with the objective of contributing to the understanding its transmission dynamics and to the development of control strategies. To this end, we formulated a system of ordinary differential equations that describe the malaria disease transmission dynamics in Tumaco and considered both vectorial and vertical transmission of disease. We performed a sensitivity analysis of parameters that allowed us to define the following control variables: indoor residual spraying (IRS), bed nets (BN), intermittent prophylactic treatment in pregnancy (IPTp) and antimalarial treatment (AT). Using previously identified control variables, we formulated an optimal control problem with different control strategies. We analytically and numerically solved the optimal control problem and generated a cost-effectiveness analysis of these strategies using data from rural areas of Tumaco. The results suggested that simultaneous implementation of IRS, BN, IPTp and AT strategies are the best options.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Agusto FB (2009) Application of optimal control to the epidemiology of HIV-malaria co-infection, vol 1. Nova Sciences Publishers, Inc, New York, pp 139–167

  2. Agusto FB (2014) Malaria drug resistance: the impact of human movement and spatial heterogeneity. Bull Math Biol 76(7):1607–1641

  3. Agusto FB, Valle Del, Blayneh KW, Ngonghala CN, Goncalves Gong H (2013) The impact of bed-net use on malaria prevalence. J Theor Biol 320:58–65

  4. Agusto FB, Gumel AB, Parham PE (2015) Qualitative assessment of the role of temperature variations on malaria transmission dynamics. J Biol Syst 23(4):30–55

  5. Arino J, Ducrot A, Zongo P (2012) A metapopulation model for malaria with transmission-blocking partial immunity in hosts. J Math Biol 64(3):423–448

  6. Auger P, Kouokam E, Sallet G, Tchuente M, Tsanou B (2008) The Ross-Macdonald model in a patchy environment. Math Biosci 216(2):123–131

  7. Basanez M, Rodriguez D (2007) Dinámica de transmisión y modelos matemáticos en enfermedades transmitidas por vectores. Entomotropica 19(3):113–134

  8. Blayneh K, Mohammed-Awel J (2014) Insecticide-resistant mosquitoes and malaria control. Math Biosci 252:14–26

  9. Boëte C, Agusto F, Reeves R (2014) Impact of mating behaviour on the success of malaria control through a single inundative release of transgenic mosquitoes. J Theor Biol 347:33–43

  10. Carmona-Fonseca J, Maestre A (2009) Incidence of gestational, congenital and placental malaria in Urabá (Antioquia, Colombia), 2005–2007. Revista Colombiana de Obstetricia y Ginecología 60(1):19–33

  11. Chitnis N (2005) Using mathematical models in controlling the spread of malaria, Partial Fulfillment of the Requirements For the Degree of Doctor Of Philosophy In the Graduate College, University of Arizona

  12. Chitnis N, Cushing J, Hyman J (2006) Bifurcation analysis of a mathematical model for malaria transmission. SIAM J Appl Math 67(1):24–45

  13. Chitnis N, Hyman J, Cushing J (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull Math Biol 70(5):1272–1296

  14. Cosner C, Beier J, Cantrell R, Kapitanski L, Potts M, Ruan S (2009) The effects of human movement on the persistence of vector-borne diseases. J Theor Biol 258(4):550–560

  15. Dietz K, Molineaux L, Thomas A (1974) A malaria model tested in the African savannah. Bull World Health Organ 50:347–359

  16. Dye C, Hasibeder G (1986) Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Trans R Soc Trop Med Hyg 80(1):69–77

  17. Esteva L, Yang H (2005) Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Math Biosci 198(2):132–147

  18. Esteva L, Gumel A, De León C (2009) Qualitative study of transmission dynamics of drug-resistant malaria. Math Comput Model 50(3):611–630

  19. Gallego V (2012) Análisis de la situación de salud del municipio de Tumaco (Perfil epidemiológico)

  20. Gao L, Hethcote H (1992) Disease transmission models with density-dependent demographics. J Math Biol 30(7):717–731

  21. Gao D, Ruan S (2012) A multipatch malaria model with logistic growth populations. SIAM J Appl Math 72(3):819–841

  22. Garduno S (2002) Clásicos de la biología matemática, (Ed Siglo XXI)

  23. Ghosh M, Lashari A, Lie X (2013) Biological control of malaria: a mathematical model. Appl Math Comput 219(15):7923–7939

  24. Hasibede G, Dye C (1988) Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment. Theor Popul Biol 33(1):31–53

  25. Ibarguen-Mondragón E, Mosquera S, Cerón M, Burbano-Rosero EM, Hidalgo-Bonilla SP, Esteva L, Romero-Leiton JP (2014) Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations. BioSystems 117:60–67

  26. Lenhart S, Workman J (2007) Optimal control applied to biological models. CRC Press, Boca Raton

  27. Macdonald G (1957) Epidemiological basis of malaria control. Bull World Health Organ 15(3–5):613–656

  28. Mandal S, Sarkar R, Sinha S (2011) Mathematical models of malaria-a review. Malar J 10(1):1–22

  29. Molineros Gallon L, Calvache O, Bolanos H, Carol C, Torres C (2014) Aplicaciones de un modelo integral para el estudio de la malaria urbana en San Andrés de Tumaco, Colombia. Revista Cubana de Medicina Tropical 66(1):3–19

  30. Montoya J, Romero-Leiton JP, Ibargüen-Mondragón E (2018) Qualitative analysis of a mathematical model applied to malaria disease transmission in Tumaco (Colombia). Appl Math Sci 12(5):205–217

  31. Ngwa G, Shu W (2000) A mathematical model for endemic malaria with variable human and mosquito populations. Math Comput Model 32(7):747–763

  32. Okosun K, Ouifki R, Marcus N (2011) Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems 106(2):136–145

  33. Okosun K, Rachid O, Marcus N (2013) Optimal control strategies and cost-effectiveness analysis of a malaria model. Biosystems 111(2):83–101

  34. Padilla J, Pineros J (2011) Situación de la malaria en el Pacífico nariñense durante el año 2001. Informe Preliminar in Fquin Epidemiol Nacional 6:269–732

  35. Perko L (1991) Differential equations and dynamical systems, First edn. Springer-Verlag, New York

  36. Plan local de emergencias San Andrés de Tumaco (2012) Comité local para la atención de desastres

  37. Prosper O, Ruktanonchai N, Martcheva M (2014) Optimal vaccination and bednet maintenance for the control of malaria in a region with naturally acquired immunity. J Theor Biol 353:142–156

  38. Rafikov M, Bevilacqua L, Wyse A (2009) Optimal control strategy of malaria vector using genetically modified mosquitoes. J Theor Biol 258(3):418–425

  39. Rainey J, Mwanda W, Wairiumu P, Moormann A, Wilson M, Rochford R (2007) Spatial distribution of Burkittás lymphoma in Kenya and association with malaria risk. Trop Med Int Health 12(8):936–943

  40. Rodríguez D, Torres-Sorando L (2011) Models of infectious diseases in spatially heterogeneous environments. Bull Math Biol 63(3):547–571

  41. Rodríguez J, Uribe G, Araujo R, Narvaez P, Valencia S (2011) Epidemiology and control of malaria in Colombia. Memorias do Instituto Oswaldo Cruz 106:114–122

  42. Roll Back Malaria (2003) The Global Partnership for a Malaria-free World. Country Facts

  43. Romero-Leiton JP, Ibargüen-Mondragón E (2018) Análisis económico de la implementación estrategias de control para la enfermedad de la malaria en Tumaco (Colombia). Revista Logos, Ciencia y Tecnología 10(2):76

  44. Romero-Leiton JP, Montoya Aguilar J, Villaroel M, Ibargüen-Mondragón E (2017) Influencia de la fuerza de infección y la transmisión vertical en la malaria: Modelado Matemático. Revista Facultad de Ciencias Básicas 13(1):4–18

  45. Romero-Leiton JP, Montoya J, Ibargüen-Mondragón E (2018) An optimal control problem applied to malaria disease in Colombia. Appl Math Sci 12(6):279–292

  46. Ross R (1910) The prevention of malaria. Dutton, New York

  47. Silva C, Torres D (2013) An optimal control approach to malaria prevention via insecticide-treated nets. In: Conference Papers in Science Hindawi Publishing Corporation

  48. Smith D, Dushoff J, McKenzi F (2004) The risk of a mosquito-borne infection in a heterogeneous environment. PLoSBiol 2(11):368–375

  49. Tchuenche M, Chiyaka C, Chan D, Matthews A, Mayer G (2011) Mathematical model for antimalarial drug resistance. Math Med Biol 28(4):335–355

  50. Tobón A et al (2006) Epidemiología de la malaria falciparum complicada: estudios de casos y controles en Tumaco y Turbo, Colombia 2003. Rev Bras Epidemiol 9(3):283–296

  51. Torres-Sorando L, Rodríguez D (1997) Models of spatio-temporal dynamics in malaria. Ecol Model 104(2):231–240

  52. Tumwiine J, Mugisha J, Luboobi L (2008) Threshold and stability results for a malaria model in a population with protective intervention among high risk groups. Math Model Anal 13(3):443–460

  53. Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models disease transmission. Math Biosci 180(1):29–48

  54. World Health Organization (WHO): World Malaria Report 2016. Accessed 10 jan 2018

Download references


Jhoana P. Romero-Leiton acknowledges for the scholarship Jóvenes Investigadores e innovadores granted by Fundación CEIBA. E. Ibargüen acknowledges support from Project No. 114-19/10/2017 (VIPRI-UDENAR). This work is dedicated to the memory of Ph.D Anthony Uyi Afuwape who in life helped us unconditionally.

Author information

Correspondence to Jhoana P. Romero-Leiton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Luz de Teresa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romero-Leiton, J.P., Castellanos, J.E. & Ibargüen-Mondragón, E. An optimal control problem and cost-effectiveness analysis of malaria disease with vertical transmission applied to San Andrés de Tumaco (Colombia). Comp. Appl. Math. 38, 133 (2019).

Download citation


  • Malaria
  • Sensitivity analysis of parameters
  • Optimal control
  • Cost-effectiveness analysis

Mathematics Subject Classification

  • 92B05
  • 49J15