Advertisement

Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction–diffusion equations

  • M. A. Abdelkawy
  • António M. LopesEmail author
  • M. A. Zaky
Article
  • 35 Downloads

Abstract

This paper proposes a new method for solving distributed order time-fractional reaction–diffusion equations (DO-TFRDEs). Extended versions of the shifted Jacobi–Gauss–Lobatto and shifted fractional order Jacobi–Gauss–Radau collocation methods are developed for reducing the DO-TFRDEs to systems of algebraic equations and computing their approximate solutions. The applicability and accuracy of the method is illustrated through numerical examples.

Keywords

Spectral collocation method Caputo fractional derivative Distributed order fractional reaction–diffusion equation 

Mathematics Subject Classification

65M70 74S25 26A33 35R11 

Notes

References

  1. Abdelkawy M, Zaky M, Bhrawy A, Baleanu D (2015) Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model. Rom. Rep. Phys. 67(3):773–791Google Scholar
  2. Atangana A, Alabaraoye E (2013) Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations. Adv. Differ. Equ. 2013(1):94CrossRefGoogle Scholar
  3. Bhrawy A (2014) An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247:30–46MathSciNetzbMATHGoogle Scholar
  4. Bhrawy A, Abdelkawy M (2015) A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J. Comput. Phys. 294:462–483MathSciNetCrossRefGoogle Scholar
  5. Bhrawy A, Al-Zahrani A, Alhamed Y, Baleanu D (2014) A new generalized Laguerre–Gauss collocation scheme for numerical solution of generalized fractional pantograph equations. Rom. J. Phys. 59(7–8):646–657zbMATHGoogle Scholar
  6. Bhrawy A, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281:876–895MathSciNetCrossRefGoogle Scholar
  7. Chechkin A, Gorenflo R, Sokolov I, Gonchar V (2003) Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6:259–280MathSciNetzbMATHGoogle Scholar
  8. Diethelm K, Ford NJ (2009) Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225(1):96–104MathSciNetCrossRefGoogle Scholar
  9. Doha E (2004) On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. J. Phys. A 37(3):657MathSciNetCrossRefGoogle Scholar
  10. Doha E, Bhrawy A, Ezz-Eldien S (2011) Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Modelling 35(12):5662–5672MathSciNetCrossRefGoogle Scholar
  11. Doha EH, Bhrawy A, Abdelkawy M, Van Gorder RA (2014) Jacobi–Gauss–Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations. J. Comput. Phys. 261:244–255MathSciNetCrossRefGoogle Scholar
  12. Ford NJ, Morgado ML (2012) Distributed order equations as boundary value problems. Comput. Math. Appl. 64(10):2973–2981MathSciNetCrossRefGoogle Scholar
  13. Gilding BH, Kersner R (2012) Travelling Waves in Nonlinear Diffusion-Convection Reaction, vol 60. Birkhäuser, BaselzbMATHGoogle Scholar
  14. Giona M, Roman HE (1992) Fractional diffusion equation for transport phenomena in random media. Phys. A 185(1–4):87–97CrossRefGoogle Scholar
  15. Gorenflo R, Luchko Y, Stojanović M (2013) Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16(2):297–316MathSciNetCrossRefGoogle Scholar
  16. Jiao Z, Chen Y, Podlubny I, Kochubei A (2008) Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340:252–281MathSciNetCrossRefGoogle Scholar
  17. Khater A, Malfliet W, Callebaut D, Kamel E (2002) The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction-diffusion equations. Chaos Solitons Fractals 14(3):513–522MathSciNetCrossRefGoogle Scholar
  18. Kirchner JW, Feng X, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403(6769):524CrossRefGoogle Scholar
  19. Li X, Wu B (2016) A numerical method for solving distributed order diffusion equations. Appl. Math. Lett. 53:92–99MathSciNetCrossRefGoogle Scholar
  20. Luchko Y (2009) Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal 12(4):409–422MathSciNetzbMATHGoogle Scholar
  21. Magin RL (2006) Fractional Calculus in Bioengineering. Begell House Redding, ReddingGoogle Scholar
  22. Mainardi F, Mura A, Gorenflo R, Stojanović M (2007) The two forms of fractional relaxation of distributed order. J. Vib. Control 13(9–10):1249–1268MathSciNetCrossRefGoogle Scholar
  23. Mainardi F, Mura A, Pagnini G, Gorenflo R (2008) Time-fractional diffusion of distributed order. J. Vib. Control 14(9–10):1267–1290MathSciNetCrossRefGoogle Scholar
  24. Markowich PA, Szmolyan P (1989) A system of convection-diffusion equations with small diffusion coefficient arising in semiconductor physics. J. Differ. Equ. 81(2):234–254MathSciNetCrossRefGoogle Scholar
  25. Mashayekhi S, Razzaghi M (2016) Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315:169–181MathSciNetCrossRefGoogle Scholar
  26. Mayawala K, Vlachos DG, Edwards JS (2006) Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations. Biophys. Chem. 121(3):194–208CrossRefGoogle Scholar
  27. Meerschaert M, Nane E, Vellaisamy P (2011) Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379:216–228MathSciNetCrossRefGoogle Scholar
  28. Meerschaert MM, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1):80–90MathSciNetCrossRefGoogle Scholar
  29. Moghaddam BP, Machado J, Morgado M (2019) Numerical approach for a class of distributed order time fractional partial differential equations. Appl. Numer. Math. 136:152–162MathSciNetCrossRefGoogle Scholar
  30. Moghaddam BP, Machado JAT (2017) A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Comput. Math. Appl. 73(6):1262–1269MathSciNetCrossRefGoogle Scholar
  31. Morgado ML, Rebelo M (2015) Numerical approximation of distributed order reaction-diffusion equations. J. Comput. Appl. Math. 275:216–227MathSciNetCrossRefGoogle Scholar
  32. Mostaghim ZS, Moghaddam BP, Haghgozar HS (2018) Numerical simulation of fractional-order dynamical systems in noisy environments. Comput. Appl. Math. 37(5):6433MathSciNetCrossRefGoogle Scholar
  33. Naber M (2004) Distributed order fractional sub-diffusion. Fractals 12:23–32MathSciNetCrossRefGoogle Scholar
  34. Newell AC, Whitehead JA (1969) Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38(2):279–303MathSciNetCrossRefGoogle Scholar
  35. Podlubny I (1998) Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of Their Applications, vol 198. Elsevier, AmsterdamzbMATHGoogle Scholar
  36. Segel LA (1969) Distant side-walls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 38(1):203–224CrossRefGoogle Scholar
  37. Sokolov I, Chechkin A, Klafter J (2004) Distributed-order fractional kinetics. Acta Phys. Pol. B 35:1323Google Scholar
  38. Tarasov VE (2011) Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer Science & Business Media, BerlinGoogle Scholar
  39. Tarasov VE, Tarasova VV (2017) Time-dependent fractional dynamics with memory in quantum and economic physics. Ann. Phys. 383:579–599MathSciNetCrossRefGoogle Scholar
  40. Tikhomirov VM (1991) A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. In: Tikhomirov VM (eds) Selected Works of AN Kolmogorov. Springer, Dordrecht, pp 242–270Google Scholar
  41. Yaghoobi S, Moghaddam BP, Ivaz K (2017) An efficient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dyn. 87(2):815MathSciNetCrossRefGoogle Scholar
  42. Yang XJ, Machado JT, Srivastava H (2016) A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach. Appl. Math. Comput. 274:143–151MathSciNetzbMATHGoogle Scholar
  43. Yang XJ, Tenreiro Machado J, Baleanu D, Cattani C (2016) On exact traveling-wave solutions for local fractional Korteweg-de Vries equation. Chaos 26(8):084312MathSciNetCrossRefGoogle Scholar
  44. Ye H, Liu F, Anh V (2015) Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 298:652–660MathSciNetCrossRefGoogle Scholar
  45. Zayernouri M, Ainsworth M, Karniadakis GE (2015) A unified Petrov–Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Eng. 283:1545–1569MathSciNetCrossRefGoogle Scholar
  46. Zeldowitsch, J., Frank-Kamenetzki, D.: A theory of thermal propagation of flame. In: Dynamics of Curved Fronts, pp. 131–140. Elsevier, Marseille, France (1988)Google Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud IslamicUniversity (IMSIU)RiyadhSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt
  3. 3.UISPA–LAETA/INEGI, Faculty of EngineeringUniversity of PortoPortoPortugal
  4. 4.Department of Applied MathematicsNational Research CentreGizaEgypt

Personalised recommendations