Advertisement

A new approach for determining multi-objective optimal control of semilinear parabolic problems

  • H. AlimoradEmail author
Article
  • 96 Downloads

Abstract

In this paper, two approaches based on evolutionary algorithms are applied to solve a multi-objective optimal control problem governed by semilinear parabolic partial differential equations. In this approach, first, we change the problem into a measure-theoretical one, replace this with an equivalent infinite dimensional multi-objective nonlinear programming problem and apply approximating schemes. Finally, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization are employed to obtain Pareto optimal solutions of the problem. Numerical examples are presented to show the efficiency of the given approach.

Keywords

Multi-objective optimal control problem Pareto solution Evolutionary algorithm Radon measure 

Mathematics Subject Classification

90C29 49M27 

Notes

References

  1. Alimorad H, Fakharzadeh JA (2017) A theoretical measure technique for determining 3D symmetric nearly optimal shapes with a given center of mass. Comput Math Math Phys 57(7):12251240MathSciNetCrossRefGoogle Scholar
  2. Borzabadi AH, Hasanabadi M, Sadjadi N (2016) Approximate Pareto optimal solutions of multi-objective optimal control problems by evolutionary algorithms. Control Optim Appl Math 1(1):1–19Google Scholar
  3. Ehrgott M (2005) Multicriteria optimization. Springer, BerlinzbMATHGoogle Scholar
  4. Eichfelder G (2009) An adaptive scalarization method in multi-objective optimization. SIAM J Optim 19(4):1694–1718CrossRefGoogle Scholar
  5. El-Kady MM, Salim MS, El-Sagheer AM (2003) Numerical treatment of multi-objective optimal control problems. Automatica 39:4755CrossRefGoogle Scholar
  6. Fakharzadeh JA, Rubio JE (1999) Shape and measure. J Math Control Inf 16:207–220MathSciNetCrossRefGoogle Scholar
  7. Fakharzadeh JA, Alimorad H, Rafiei Z (2013) Using linearization and penalty approach to solve optimal shape design problem with an obstacle. J Math Comput Sci 7:43–53Google Scholar
  8. Gambier A, Bareddin E (2007) Multi-objective optimal control: an overview. In: IEEE conference on control applications, CCA, Singapore, pp 170–175Google Scholar
  9. Gambier A, Jipp M (2011) Multi-objective optimal control: an introduction. In: Proceedings of the 8th Asian control conference (ASCC11). Kaohsiung, Taiwan, pp 15–18Google Scholar
  10. Introduction to Galerkin Methods (2016) http://fischerp.cs.illinois.edu/tam470/refs/galerkin2.pdf. Accessed October 2018
  11. Iapichino SL, Volkwein ST (2015) Reduced-order multi-objective optimal control of semilinear parabolic problems. Konstanzer Online-Pablikations Syst 347:1–8Google Scholar
  12. Kumar V, Minz S (2014) Multi-objective particle swarm optimization: an introduction. Smart Comput Rev 4(5):335–353CrossRefGoogle Scholar
  13. Liu GP, Yang JB, Whidborne JF (2003) Multi-objective optimization and control. Research Studies Press Ltd., ExeterGoogle Scholar
  14. Maity K, Maiti M (2005) Numerical approach of multi-objective optimal control problem in imprecise environment. Fuzzy Optim Decision Mak 4:313–330MathSciNetCrossRefGoogle Scholar
  15. Munch A (2009) Optimal internal dissipation of damped wave equation using a topological approach. Int J Appl Math Comput Sci 19:15–37MathSciNetCrossRefGoogle Scholar
  16. Rosenbloom PC (1956) Qudques classes de problems exteremaux. Bull Soc Math France 80:183–216Google Scholar
  17. Rubio JE (1986) Control and optimization: the linear treatment of nonlinear problems. Manchester university Press, ManchesterzbMATHGoogle Scholar
  18. Rubio JE (1990) Modern trends in calculus of variations and optimal control theory. In: Geise R (ed) Vortagsauszuge, Mathematiker kongress, 155–163, Berlin Mathematische GesellschaftGoogle Scholar
  19. Rudin W (1983) Real and complex analysis, 2nd edn. Tata McGraw-Hill Publishing Co Ltd., New DehlizbMATHGoogle Scholar
  20. Yalcin Kaya C, Maurer H (2014) A numerical method for nonconvex multi-objective optimal control problems. Comput Optim Appl 57(3):685–702MathSciNetCrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  1. 1.Department of MathematicsJahrom UniversityJahromIran

Personalised recommendations