Stepwise modeling with friction/inertia effects separation and velocity control with dynamic compensation of a reaction wheel

  • Rafael A. M. LopesEmail author
  • Valdemir Carrara
  • Hélio K. Kuga


Reaction wheels have been largely employed as primary actuators in attitude control systems to perform pointing functions in Earth observation satellites. Their dynamic behavior characterization and proper velocity control are relevant tasks in the scope of attitude control design. In this work, a given reaction wheel is evaluated. Firstly, a stepwise identification procedure is applied to obtain the dynamic model. Separated tests are proposed to highlight the contribution of friction and inertia forces in the underlying dynamics and to estimate their respective parameters. Then, this model is used in a design of a velocity control law for the reaction wheel. A structure with a model-based dynamic compensation, a proportional-integral (PI) feedback loop and a pre-filter is proposed to obtain smoother behavior in velocity reversals and tracking performance in a determined velocity range. A comparison between the proposed controller with the feedback PI control and pre-filter only shows a clear advantage of using the dynamic compensation.


Reaction wheel Friction/inertia modeling Velocity control Dynamic compensation 

Mathematics Subject Classification

93A30 93B30 93Cxx 74-XX 



  1. Al-Bender F, Lampaert V, Swevers J (2005) The generalizaed Maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans Autom Control 50(11):1883–1887CrossRefGoogle Scholar
  2. Altpeter F (1999) Friction modeling, identification and compensation. PhD dissertation, Ecole Politechnique Federal de LausanneGoogle Scholar
  3. Armstrong-Helouvry B (1990) Stick slip and control in low-speed motion. IEEE Trans Autom Control 38(10):1483–1496MathSciNetCrossRefGoogle Scholar
  4. Armstrong-Hlouvry B, Dupont P, Canudas de Wit C (1994) A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7):1083–1138CrossRefGoogle Scholar
  5. Canudas-de-Wit C, Olsson H, Astrom KJ, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Autom Control 40(3):419–425MathSciNetCrossRefGoogle Scholar
  6. Carrara V, Kuga HK (2013) Estimating friction parameters in reaction wheels for attitude control. Math Prob Eng 2013:1–8MathSciNetCrossRefGoogle Scholar
  7. Carrara V, Silva AG, Kuga HK (2012) A dynamic friction model for reaction wheels. Adv Astronaut Sci 145:343–352Google Scholar
  8. Carrara V, Kuga HK (2015) Current and speed control operating modes of a reaction wheel. Appl Mech Mater 706:170–180CrossRefGoogle Scholar
  9. Dahl P (1968) A solid friction model. Technical Report TOR-0158(3107-18)-1, Aerospace Corporation, El Segundo, CAGoogle Scholar
  10. Dupont P, Armstrong B, Hayward V (2000) Elasto-plastic friction model: contact compliance and stiction. Proceedings of the American Control Conference. Chicago, USAGoogle Scholar
  11. Dupont P, Hayward V, Armstrong B, Altpeter F (2002) Single state elasto-plastic friction models. IEEE Trans Autom Control 47(5):787–792CrossRefGoogle Scholar
  12. Johnson CT (1992) Experimental identification of friction and its compensation in precise, position controlled machines. IEEE Trans Ind Appl 28(6):1392–1398CrossRefGoogle Scholar
  13. Karnopp D (1985) Computer simulation of stick-slip friction in mechanical dynamic systems. J Dyn Syst, Meas, Control 107(1):100–103CrossRefGoogle Scholar
  14. Rabinowicz E (1951) The nature of the static and kinetic coefficients of friction. J Appl Phys 22(11):1373–1379CrossRefGoogle Scholar
  15. Rabinowicz E (1958) The intrinsic variables affecting the stick-slip process. Proc Phys Soc 71(4):668–675CrossRefGoogle Scholar
  16. Richardson RSH, Noelle H (1976) Surface friction under time-dependent loads. Wear 37:87–101CrossRefGoogle Scholar
  17. Stribeck R (1902) Die wesentlischen eigenschaften fer gleit- und rollenlager (the key qualities of sliding and roller bearings). Zeitschrift des Vereins Deutscher Ingenieure 46(38):1342–1348Google Scholar
  18. Stribeck R (1902) Die wesentlischen eigenschaften fer gleit- und rollenlager (the key qualities of sliding and roller bearings). Zeitschrift des Vereins Deutscher Ingenieure 46(39):1432–1437Google Scholar
  19. Swevers J, Al-Bender F, Ganseman C, Prajogo T (2000) An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans Autom Control 45(4):675–686MathSciNetCrossRefGoogle Scholar
  20. Vectronic Aerospace GmbH (2014) Description/manual interface control document of reaction wheel VRW-01Google Scholar
  21. Walrath CD (1984) Adaptive bearing friction compensation based on recent knowledge of dynamic friction. Automatica 20(6):717–727CrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  • Rafael A. M. Lopes
    • 1
    Email author
  • Valdemir Carrara
    • 2
  • Hélio K. Kuga
    • 2
  1. 1.INPE-National Institute for Space ResearchSão José dos CamposBrazil
  2. 2.ITA-Technological Institute of AeronauticsSão José dos CamposBrazil

Personalised recommendations