Advertisement

A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains

  • Ning Du
  • Hai-Wei SunEmail author
  • Hong Wang
Article
  • 80 Downloads

Abstract

A fast finite difference method is developed for solving space-fractional diffusion equations with variable coefficient in convex domains using a volume penalization approach. The resulting coefficient matrix can be written as the discretized matrix from the extended rectangular domain plus a diagonal matrix with jumping entries due to the penalization parameter. An efficient preconditioner is constructed based on the combination of two approximate inverse circulant matrices. The preconditioned BiCGSTAB method, with the proposed preconditioner, is implemented for solving the resulting linear system. Numerical results are carried out to demonstrate the utility of the proposed algorithm.

Keywords

Anomalous diffusion Finite difference method Space-fractional diffusion equation Circulant preconditioner Penalization 

Mathematics Subject Classification

35R05 65F08 65F10 65M06 

Notes

Acknowledgements

The research is supported in part by the National Science Foundation under Grant DMS-1216923, the OSD/ARO MURI Grant W911NF-15-1-0562, the National Natural Science Foundation of China under Grants 11831010, 11471194, 11571115 and 11371229, Taishan research project of Shandong Province, the research grant 0118/2018/A3 from FDCT of Macao, and MYRG2018-00015-FST from University of Macau.

References

  1. Angot P, Bruneau C-H, Fabrie P (1999) A penalization method to take into account obstacles in incompressible visocous flows. Numer Math 81:491–520CrossRefGoogle Scholar
  2. Benson D, Wheatcraft SW, Meerschaert MM (2000) The fractional-order governing equation of Lévy motion. Water Resour Res 36:1413–1423CrossRefGoogle Scholar
  3. Carbou G, Fabrie P (2003) Boundary layer for a penalization method for viscous impcompressible flow. Adv Differ Equ 8:1453–1480Google Scholar
  4. Chan R, Ng M (2006) Conjugate gradient methods for Toeplitz systems. SIAM Rev 38:427–482MathSciNetCrossRefGoogle Scholar
  5. Chan T (1988) An optimal circulant preconditioner for Toeplitz systems. SIAM J Sci Stat Comput 9:766–771MathSciNetCrossRefGoogle Scholar
  6. Davis PJ (1979) Circulant matrices. Wiley-Intersciences, New YorkGoogle Scholar
  7. del-Castillo-Negrete D (2004) Fractional diffusion in plasma turbulence. Phys Plasmas 11:3854–3864CrossRefGoogle Scholar
  8. Ervin VJ, Roop JP (2007) Variational solution of fractional advection dispersion equations on bounded domains in \({R}^d\). Numer Methods Part Differ Equ 23:256–281CrossRefGoogle Scholar
  9. Ferziger J, Peric M (1996) Numerical methods in fluid dynamics. Springer-Verlag, BerlinCrossRefGoogle Scholar
  10. Gray RM (2006) Toeplitz and circulant matrices: a review. Found Trends Commun Inf Theory 2:155–239CrossRefGoogle Scholar
  11. Jia J, Wang H (2016) A fast finite volume method for conservative space-fractional diffusion equations in convex domains. J Comput Phys 310:63–84MathSciNetCrossRefGoogle Scholar
  12. Kolomenskiy D, van yen Nguyen R, Schneider K (2015) Analysis and discretization of the volume penalized Laplace operator with Neumann boundary conditions. Appl Numer Math 95:238–249MathSciNetCrossRefGoogle Scholar
  13. Kolomenskiy D, Schneider K (2009) A Fourier spectral method for the Navier-Stokes equations with volume penalization for moving solid obstacles. J Comput Phys 228:5687–5709MathSciNetCrossRefGoogle Scholar
  14. Li C, Ding H (2014) Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl Math Model 38:3802–3821MathSciNetCrossRefGoogle Scholar
  15. Liu F, Anh V, Turner I (2004) Numerical solution of the space fractional Fokker–Planck equation. J Comput Appl Math 166:209–219MathSciNetCrossRefGoogle Scholar
  16. Lynch VE, Carreras BA, del-Castillo-Negrete D, Ferreira-Mejias KM, Hicks HR (2003) Numerical methods for the solution of partial differential equations of fractional order. J Comput Phys 192:406–421MathSciNetCrossRefGoogle Scholar
  17. Meerschaert MM, Scheffler HP, Tadjeran C (2006) Finite difference methods for two-dimensional fractional dispersion equation. J Comput Phys 211:249–261MathSciNetCrossRefGoogle Scholar
  18. Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172:65–77MathSciNetCrossRefGoogle Scholar
  19. Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math Gen 37:R161–R208MathSciNetCrossRefGoogle Scholar
  20. Ng M, Pan J (2010) Approximate inverse circulant-plus-diagonal preconditioners for Toeplitz-plus-diagonal matrices. SIAM J Sci Comput 32:1442–1464MathSciNetCrossRefGoogle Scholar
  21. Pan J, Ke R, Ng M, Sun H (2014) Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J Sci Comput 36:A2698–A2719MathSciNetCrossRefGoogle Scholar
  22. Peskin C (2012) The immersed boundary method. Acta Numer 11:479–517MathSciNetGoogle Scholar
  23. Podlubny I (1999) Fractional differential equations. Academic Press, CambridgeGoogle Scholar
  24. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Rhode IslandCrossRefGoogle Scholar
  25. Strang G (1986) A proposal for Toeplitz matrix calculations. Stud Appl Math 74:171–176CrossRefGoogle Scholar
  26. Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 64:213–231CrossRefGoogle Scholar
  27. Tadjeran C, Meerschaert MM (2007) A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J Comput Phys 220:813–823MathSciNetCrossRefGoogle Scholar
  28. Wang H, Basu TS (2012) A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J Sci Comput 34:A2444–A2458MathSciNetCrossRefGoogle Scholar
  29. Wang H, Du N (2013) A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J Comput Phys 240:49–57MathSciNetCrossRefGoogle Scholar
  30. Wang H, Wang K, Sircar T (2010) A direct \(O(N\log ^2 N)\) finite difference method for fractional diffusion equations. J Comput Phys 229:8095–8104MathSciNetCrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  1. 1.School of MathematicsShandong UniversityJinanChina
  2. 2.Department of MathematicsUniversity of MacauMacaoChina
  3. 3.Department of MathematicsUniversity of South CarolinaColumbiaUSA

Personalised recommendations