Advertisement

Computational and Applied Mathematics

, Volume 37, Issue 4, pp 4805–4820 | Cite as

A multigrid waveform relaxation method for solving the poroelasticity equations

  • S. R. Franco
  • C. Rodrigo
  • F. J. Gaspar
  • M. A. V. Pinto
Article

Abstract

In this work, a multigrid waveform relaxation method is proposed for solving a collocated finite difference discretization of the linear Biot’s model. This gives rise to the first space–time multigrid solver for poroelasticity equations in the literature. The waveform relaxation iteration is based on a point-wise Vanka smoother that couples the pressure variable at a grid-point with the displacements around it. A semi-algebraic mode analysis is proposed to theoretically analyze the convergence of the multigrid waveform relaxation algorithm. This analysis is novel since it combines the semi-algebraic analysis, suitable for parabolic problems, with the non-standard analysis for overlapping smoothers. The practical utility of the method is illustrated through several numerical experiments in one and two dimensions.

Keywords

Poroelasticity Multigrid waveform relaxation Semi-algebraic mode analysis Vanka smoother Space–time grids 

Mathematics Subject Classification

65M55 65M22 65F10 

References

  1. Aguilar G, Gaspar F, Lisbona F, Rodrigo C (2008) Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation. Int J Numer Meth Eng 75(11):1282–1300.  https://doi.org/10.1002/nme.2295
  2. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164CrossRefzbMATHGoogle Scholar
  3. Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26(2):182–185MathSciNetCrossRefzbMATHGoogle Scholar
  4. Brandt A (1977) Multi-level adaptive solutions to boundary-value problems. Math Comput 31(138):333–390MathSciNetCrossRefzbMATHGoogle Scholar
  5. Brandt A (1981) Multigrid solvers for non-elliptic and singular-perturbation steady-state problems. The Weizmann Institute of Science, RehovotGoogle Scholar
  6. Brandt A (1994) Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with L2-norm. SIAM J Numer Anal 31(6):1695–1730MathSciNetCrossRefzbMATHGoogle Scholar
  7. Favino M, Grillo A, Krause R (2013) A stability condition for the numerical simulation of poroelastic systems. In: Hellmich C, Pichler B, Adam D (eds) Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, pp 919–928.  https://doi.org/10.1061/9780784412992.110
  8. Ferronato M, Castelletto N, Gambolati G (2010) A fully coupled 3-d mixed finite element model of Biot consolidation. J Comput Phys 229(12):4813–4830CrossRefzbMATHGoogle Scholar
  9. Friedhoff S, MacLachlan S (2015) A generalized predictive analysis tool for multigrid methods. Numer Linear Algebra Appl 22(4):618–647MathSciNetCrossRefzbMATHGoogle Scholar
  10. Gander MJ (2015) 50 years of time parallel time integration. Springer International Publishing, Cham, pp 69–113zbMATHGoogle Scholar
  11. Gaspar FJ, Rodrigo C (2017) Multigrid waveform relaxation for the time-fractional heat equation. SIAM J Sci Comput 39(4):A1201–A1224.  https://doi.org/10.1137/16M1090193
  12. Gaspar FJ, Lisbona FJ, Vabishchevich PN (2003) A finite difference analysis of Biot’s consolidation model. Appl Numer Math 44(4):487–506.  https://doi.org/10.1016/S0168-9274(02)00190-3
  13. Gaspar FJ, Lisbona FJ, Oosterlee CW (2008) A stabilized difference scheme for deformable porous media and its numerical resolution by multigrid methods. Comput Vis Sci 11(2):67–76MathSciNetCrossRefGoogle Scholar
  14. Haga JB, Osnes H, Langtangen HP (2012) On the causes of pressure oscillations in low-permeable and low-compressible porous media. Int J Numer Anal Meth Geomech 36(12):1507–1522.  https://doi.org/10.1002/nag.1062
  15. Hu X, Rodrigo C, Gaspar FJ (2017) Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation. arXiv:1706.07632v1 [math.NA]
  16. Lewis R, Schrefler B (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, New YorkzbMATHGoogle Scholar
  17. Lubich C, Ostermann A (1987) Multigrid dynamic iteration for parabolic equations. BIT 27:216–234MathSciNetCrossRefzbMATHGoogle Scholar
  18. MacLachlan SP, Oosterlee CW (2011) Local fourier analysis for multigrid with overlapping smoothers applied to systems of pdes. Numer Linear Algebra Appl 18(4):751–774MathSciNetCrossRefzbMATHGoogle Scholar
  19. Molenaar J (1991) A two-grid analysis of the combination of mixed finite elements and Vanka-type relaxation. In: Hackbusch W, Trottenberg U (eds) Multigrid Methods III. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, vol 98. Birkhäuser, BaselGoogle Scholar
  20. Nordbotten JM (2016) Stable cell-centered finite volume discretization for biot equations. SIAM J Numer Anal 54(2):942–968.  https://doi.org/10.1137/15M1014280
  21. Oosterlee C, Gaspar F, Washio T, Wienands R (1998) Multigrid line smoothers for higher order upwind discretizations of convection-dominated problems. J Comput Phys 139(2):274–307MathSciNetCrossRefzbMATHGoogle Scholar
  22. Oosterlee CW, Gaspar FJ (2008) Multigrid relaxation methods for systems of saddle point type. Appl Numer Math 58(12):1933–1950MathSciNetCrossRefzbMATHGoogle Scholar
  23. Phillips P, Wheeler M (2009) Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach. Comput Geosci 13(1):5–12CrossRefzbMATHGoogle Scholar
  24. Rodrigo C, Gaspar F, Hu X, Zikatanov L (2016a) Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput Methods Appl Mech Eng 298:183–204MathSciNetCrossRefGoogle Scholar
  25. Rodrigo C, Gaspar F, Lisbona F (2016b) On a local fourier analysis for overlapping block smoothers on triangular grids. Appl Numer Math 105:96–111MathSciNetCrossRefzbMATHGoogle Scholar
  26. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New YorkCrossRefGoogle Scholar
  27. Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid. Academic Press, New YorkzbMATHGoogle Scholar
  28. Vandewalle S (1993) Parallel Multigrid waveform relaxation for parabolic problems. Teubner, Stuttgart, B.GCrossRefzbMATHGoogle Scholar
  29. Vanka S (1986) Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J Comput Phys 65(1):138–158MathSciNetCrossRefzbMATHGoogle Scholar
  30. Wesseling P (1992) An introduction to multigrid methods. Wiley, ChichesterzbMATHGoogle Scholar
  31. Wienands R, Joppich W (2005) Practical Fourier analysis for multigrid methods. Chapman and Hall/CRC Press, Boca RatonzbMATHGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2018

Authors and Affiliations

  1. 1.Department of MathematicsState University of Centro-OesteIratiBrazil
  2. 2.Federal University of Paraná, Graduate Program in Numerical Methods in EngineeringCuritibaBrazil
  3. 3.IUMA and Applied Mathematics DepartmentUniversity of ZaragozaZaragozaSpain
  4. 4.CWI, Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  5. 5.Department of Mechanical EngineeringFederal University of ParanáCuritibaBrazil

Personalised recommendations