Advertisement

Computational and Applied Mathematics

, Volume 37, Supplement 1, pp 282–295 | Cite as

A model for interactions between immune cells and HIV considering drug treatments

  • Dayse H. Pastore
  • Roberto C. A. Thomé
  • Claudia M. Dias
  • Edilson F. ArrudaEmail author
  • Hyun M. Yang
Article
  • 111 Downloads

Abstract

In this work, we analyze the capacity of the human body to combat HIV. The model here treated takes into consideration four types of defense of an organism infected by HIV: susceptible defense cells, the infected immune cells, killer T cells, and the HIV-specific killer T cells. This model, therefore, analyzes the interactions between the responses of killer T cells and HIV infections, evidencing how the immune system is attacked and how it defends. An optimal control problem is proposed to derive an optimal sequence of dosages in the standard drug treatment, in such a way as to minimize the side effects.

Keywords

HIV Mathematical modelling Optimal control 

Mathematics Subject Classification

97M10 49J15 97M40 

Notes

Acknowledgements

This work was partially supported by the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro, FAPERJ, under Grant no. E-26/202.789/2015, and by the Brazilian National Research Council-CNPq, under Grants 303543/2015-9.

References

  1. Abbas UL, Mellors JW (2002) Interruption of antiretroviral therapy to augment immune control of chronic HIV-1 infection: risk without reward. Proc Natl Acad Sci 99:13377–13378.  https://doi.org/10.1073/pnas.212518999 CrossRefGoogle Scholar
  2. Adams BM, Banks HT, dae Kwon H, Tran HT (2004) Dynamic multidrug therapies for HIV: optimal and STI control approaches. Math Biosci Eng 1:223–241Google Scholar
  3. Arruda EF, Dias CM, aes CVM, Pastore DH, Thomé RCA, Yang HM (2015) An optimal control approach to HIV immunology. Appl Math 6:1115–1130.  https://doi.org/10.4236/am.2015.66102 CrossRefGoogle Scholar
  4. De Boer RJ (2002) Mathematical models of human CD4 T-cell population kinetics. Neth J Med 60:17–26Google Scholar
  5. Eisele E, Siliciano R (2012) Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37:377–388CrossRefGoogle Scholar
  6. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, Smith K, Lisziewicz J, Lori F, Flexner C, Quinn TC, Chaisson RE, Rosenberg E, Walker B, Gange S, Gallant J, Siliciano RF (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5:512–7CrossRefGoogle Scholar
  7. Grégio JM, Caetano MAL, Yoneyama T (2009) State estimation and optimal long period clinical treatment of HIV seropositive patients. Anais da Academia Brasileira de Ciências 81:3–12CrossRefGoogle Scholar
  8. Gulzar N, Copeland KFT (2004) CD8+ T-Cells: function and response to HIV infection. Curr HIV Res 2:23–37.  https://doi.org/10.2174/1570162043485077 CrossRefGoogle Scholar
  9. Heesterbeek H, Anderson R, Andreasen V, Bansal S, De Angelis D, Dye C, Eames KTD, Edmunds WJ, Frost SDW, Funk S, Hollingsworth TD, House T, Isham V, Klepac P, Lessler J, Lloyd-Smith JO, Metcalf CJE, Mollison D, Pellis L, Pulliam JRC, Roberts MG, Viboud C (2015) Modeling infectious disease dynamics in the complex landscape of global health. Science 347.  https://doi.org/10.1126/science.aaa4339
  10. Joly M, Pinto JM (2006) Role of mathematical modeling on the optimal control of hiv-1 pathogenesis. AIChE J 52:856–884.  https://doi.org/10.1002/aic.10716 CrossRefGoogle Scholar
  11. Kamata M, Kim PY, Ng HL, Ringpis GE, Kranz E, Chan J, O’Connor S, Yang OO, Chen IS (2015) Ectopic expression of anti-HIV-1 shRNAs protects CD8+ T cells modified with CD4\(\zeta \) CAR from HIV-1 infection and alleviates impairment of cell proliferation. Biochem Biophys Res Commun 463:216–221.  https://doi.org/10.1016/j.bbrc.2015.05.026 CrossRefGoogle Scholar
  12. Kilby JM, Goepfert PA, Miller AP, Gnann Jr. JW, Sillers M, Saag MS, Bucy RP (2000) Recurrence of the acute hiv syndrome after interruption of antiretroviral therapy in a patient with chronic HIV infection: a case report. Ann Intern Med 133:435–438.  https://doi.org/10.7326/0003-4819-133-6-200009190-00011, http://arXiv:/data/journals/aim/19965/0000605-200009190-00011.pdf
  13. Kirk DE (1970) Optimal control theory: an introduction. Prentice-Hall, Englewood CliffsGoogle Scholar
  14. Kreyszig E (1978) Introductory functional analysis with applications. Wiley, New YorkzbMATHGoogle Scholar
  15. Levin SA, Grenfell B, Hastings A, Perelson AS (1997) Mathematical and computational challenges in population biology and ecosystems science. Science 275:334–343CrossRefGoogle Scholar
  16. Lewis F, Syrmos V (1995) Optimal control. Wiley, New YorkGoogle Scholar
  17. Mclean AR (2013) Infectious disease modeling. In: Kanki P, Grmes DJ (eds) Infectious diseases. Springer, New York, pp 99–115CrossRefGoogle Scholar
  18. Nowak MA, Bangham CRM (1996) Population dynamics of immune responses to persistent viruses. Science 272:74–79.  https://doi.org/10.1126/science.272.5258.74 CrossRefGoogle Scholar
  19. Nowak MA, May R (2000) Virus dynamics mathematical principles of immunology and virology. Oxford University Press, OxfordzbMATHGoogle Scholar
  20. Perelson A, Nelson PW (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41:3–44MathSciNetCrossRefGoogle Scholar
  21. Perelson A, Ribeiro R (2013) Modeling the within-host dynamics of HIV infection. BMC Biol 11:96.  https://doi.org/10.1186/1741-7007-11-96 CrossRefGoogle Scholar
  22. Pinkevych M, Cromer D, Tolstrup M, Grimm AJ, Cooper DA, Lewin SR, Søgaard OS, Rasmussen Thomas, A, Kent SJ, Kelleher AD, Davenport MP (2015) HIV reactivation from latency after treatment interruption occurs on average every 5–8 days—implications for HIV remission. PLoS Pathog 11:1–19.  https://doi.org/10.1371/journal.ppat.1005000 CrossRefGoogle Scholar
  23. Pontryagin LS, Boltyanskij VG, GamKrelidze RV, Mishchenko EF (1961) The mathematical theory of optimal processes. Interscience Publishers, New YorkGoogle Scholar
  24. Sánchez-Taltavull D, Vieiro A, Alarc/’on T (2016) Stochastic modelling of the eradication of the HIV-1 infection by stimulation of latently infected cells in patients under highly active anti-retroviral therapy. J Math Biol 68:919–946MathSciNetCrossRefGoogle Scholar
  25. Shu H, Wang L, Watmough J (2014) Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model. J Math Biol 68:477–503MathSciNetCrossRefGoogle Scholar
  26. Wodarz D (2007) Killer cell dynamics: mathematical and computational approaches to immunology. Interdisciplinary applied mathematics. Springer, New YorkCrossRefGoogle Scholar
  27. Wodarz D, Chan CN, Trinité B, Komarova NL, Levy DN (2014) On the laws of virus spread through cell populations. J Virol 88:13240–13248.  https://doi.org/10.1128/JVI.02096-14 CrossRefGoogle Scholar
  28. Wodarz D, Levy DN (2011) Effect of multiple infection of cells on the evolutionary dynamics of hiv in vivo: implications for host adaptation mechanisms. Exp Biol Med 236:926–937.  https://doi.org/10.1258/ebm.2011.011062 CrossRefGoogle Scholar
  29. Yan AWC, Cao P, McCaw JM (2016) On the extinction probability in models of within-host infection: the role of latency and immunity. J Math Biol 73:787–813MathSciNetCrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2017

Authors and Affiliations

  • Dayse H. Pastore
    • 1
  • Roberto C. A. Thomé
    • 1
  • Claudia M. Dias
    • 2
  • Edilson F. Arruda
    • 3
    Email author
  • Hyun M. Yang
    • 4
  1. 1.Centro Federal de Educação Tecnológica Celso Suckow da FonsecaRio de JaneiroBrasil
  2. 2.Universidade Federal Rural do Rio de JaneiroNova IguaçuBrasil
  3. 3.Instituto Alberto Luiz Coimbra de Pós Graduação e Pesquisa de Engenharia, Programa de Engenharia de ProduçãoUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil
  4. 4.Universidade Estadual de CampinasCampinasBrasil

Personalised recommendations