Computational and Applied Mathematics

, Volume 37, Supplement 1, pp 253–266 | Cite as

A new encoding and switching scheme for chaos-based communication

  • Renato Candido
  • Magno T. M. Silva
  • Marcio Eisencraft


Many communication systems based on the synchronization of chaotic systems have been proposed as an alternative spread spectrum modulation that improves the level of privacy in data transmission. However, due to the lack of robustness of complete chaotic synchronization, even minor channel impairments are enough to hinder communication. In this paper, we propose a communication system that includes an adaptive equalizer and a switching scheme to alter between a chaos-based modulation and a conventional one, depending on the communication channel conditions. Simulation results show that the switching and equalization algorithms can successfully recover the transmitted sequence in different nonideal scenarios.


Analysis and control of nonlinear dynamical systems with practical applications Chaos and global nonlinear dynamics Synchronization in nonlinear systems 

Mathematics Subject Classification

37 Dynamical systems and ergodic theory 37Nxx Applications 37N99 None of the above, but in this section 


  1. Abib GA, Eisencraft M, Batista AM (2013) Using coupled maps to improve synchronization performance. In: Eisencraft M, Attux R, Suyama R (eds) Chaotic signals in digital communications. CRC Press Inc, Boca RatonGoogle Scholar
  2. Alligood KT, Sauer T, Yorke JA (1997) Chaos: an introduction to dynamical systems, textbooks in mathematical sciences. Springer, New YorkCrossRefGoogle Scholar
  3. Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso CR, Pesquera L, Shore KA (2005) Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438(7066):343–346CrossRefGoogle Scholar
  4. Baptista MS, Macau EE, Grebogi C, Lai Y, Rosa E (2000) Integrated chaotic communication scheme. Phys Rev E 62:4835–4845CrossRefGoogle Scholar
  5. Candido R, Eisencraft M, Silva MTM (2013) Channel equalization for synchonization of Ikeda maps. In: Proc of 21st European signal processing conference (EUSIPCO’2013), Marrakesh, MaroccoGoogle Scholar
  6. Candido R, Eisencraft M, Silva MTM (2014) Channel equalization for synchronization of chaotic maps. Digit Signal Process 33:42–49CrossRefGoogle Scholar
  7. Candido R, Soriano DC, Silva MTM, Eisencraft M (2015) Do chaos-based communication systems really transmit chaotic signals? Signal Process 108:412–420CrossRefGoogle Scholar
  8. Cuomo KM, Oppenheim AV (1993) Chaotic signals and systems for communications. In: Proc IEEE int conf acoustics, speech, and signal process, Apr. 1993, vol 3, pp 137–140Google Scholar
  9. Eisencraft M, Fanganiello RD, Baccalá LA (2009) Synchronization of discrete-time chaotic systems in bandlimited channels. Math Probl Eng 2009:1–12CrossRefGoogle Scholar
  10. Eisencraft M, Attux R, Suyama R Eds (2013) Chaotic signals in digital communications, CRC Press, Inc, Boca RatonGoogle Scholar
  11. Haykin S (2001) Communication systems, 4th edn. Wiley, New YorkGoogle Scholar
  12. Hénon M (1976) A two-dimensional mapping with a strange attractor. Commun Math Phys 50:69–77MathSciNetCrossRefGoogle Scholar
  13. Holland G, Vaidya N, Bahl P (2001) A rate-adaptive mac protocol for multi-hop wireless networks. In: Proceedings of the 7th annual international conference on mobile computing and networking, New York, NY, USA, MobiCom ’01, pp 236–251, ACMGoogle Scholar
  14. Ikeda K (1979) Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt Commun 30(2):257–261CrossRefGoogle Scholar
  15. Kennedy MP, Setti G, Rovatti R (eds) (2000) Chaotic electronics in telecommunications. CRC Press Inc, Boca RatonGoogle Scholar
  16. Kolumban G, Kennedy MP, Chua LO (1998) The role of synchronization in digital communications using chaos. ii. Chaotic modulation and chaotic synchronization. IEEE Trans Circuits Syst I 45(11):1129–1140MathSciNetCrossRefGoogle Scholar
  17. Kolumbán G, Krébesz T, Tse CK, Lau FCM (2013) Basics of communications using chaos. In: Marcio E, Romis A, Ricardo S (eds) Chaotic signals in digital communications, chapter 4. CRC Press Inc, Boca Raton, pp 111–141Google Scholar
  18. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821–824MathSciNetCrossRefGoogle Scholar
  19. Pecora LM, Carroll TL, Johnson GA, Mar DJ, Heagy JF (1997) Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos: an interdisciplinary. J Nonlinear Sci 7(4):520–543zbMATHGoogle Scholar
  20. Picchi G, Prati G (1987) Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm. IEEE Trans Commun COM 35:877–887CrossRefGoogle Scholar
  21. Sayed AH (2008) Adaptive filters. Wiley, NJCrossRefGoogle Scholar
  22. Sethares WA (1992) Adaptive algorithms with nonlinear data and error functions. IEEE Trans Signal Process 40(9):2199–2206CrossRefGoogle Scholar
  23. Stavroulakis P (ed) (2005) Chaos applications in telecommunications. CRC Press Inc, Boca RatonGoogle Scholar
  24. Williams C (2001) Chaotic communications over radio channels. IEEE Trans Circuits Syst I 48(12):1394–1404CrossRefGoogle Scholar
  25. Wu CW, Chua LO (1993) A simple way to synchronize chaotic systems with applications to secure communication systems. Int J Bifurc Chaos 3(6):1619–1627CrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2017

Authors and Affiliations

  1. 1.University of São PauloSão PauloBrazil

Personalised recommendations