Computational and Applied Mathematics

, Volume 33, Issue 2, pp 481–495 | Cite as

Numerical simulation of flows past flat plates using volume penalization

  • Kai Schneider
  • Mickaël Paget-Goy
  • Alberto Verga
  • Marie Farge


We present numerical simulations of two-dimensional viscous incompressible flows past flat plates having different kind of wedges: one tip of the plate is rectangular, while the other tip is either a wedge with an angle of \(30^\circ \) or a round shape. We study the shear layer instability of the flow considering different scenarios, either an impulsively started plate or an uniformly accelerated plate, for Reynolds number \(Re = 9500\). The volume penalization method, with either a Fourier spectral or a wavelet discretization, is used to model the plate geometry with no-slip boundary conditions, where the geometry of the plate is simply described by a mask function. On both tips, we observe the formation of thin shear layers which are rolling up into spirals and form two primary vortices. The self-similar scaling of the spirals corresponds to the theoretical predictions of Saffman for the inviscid case. At later times, these vortices are advected downstream and the free shear layers undergo a secondary instability. We show that their formation and subsequent dynamics is highly sensitive to the shape of the tips. Finally, we also check the influence of a small riblet, added on the back of the plate on the flow evolution.


Instability of shear layers Vortex dynamics Computational methods in fluid dynamics Free shear layers Wavelets Spectral methods 

Mathematics Subject Classification (2000)

Primary 65M85 Secondary 76D17 65T60 65M70 



We thank Thomas Leweke and Monika Nitsche for their fruitful discussions, and Dmitry Kolomenskiy for comments on the paper.


  1. Abid M, Verga A (2002) Stability of a vortex sheet roll-up. Phys Fluids 14(11):3829–3834CrossRefMathSciNetGoogle Scholar
  2. Angot P, Bruneau C-H, Fabrie P (1999) A penalisation method to take into account obstacles in viscous flows. Num Math 81:497–520CrossRefzbMATHMathSciNetGoogle Scholar
  3. Arquis E, Caltagirone JP (1984) Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide - milieux poreux: application à la convection naturelle. C R Acad Sci Paris II(299):1–4Google Scholar
  4. Canuto C, Hussaini MY, Quateroni A, Zang TA (1988) Spectral methods in fluid dynamics. Springer, BerlinGoogle Scholar
  5. Carbou G, Fabrie P (2003) Boundary layer for a penalization method for viscous incompressible flow. Adv Differ Equ 8:1453–1480zbMATHMathSciNetGoogle Scholar
  6. Farge M (1992) Wavelet transforms and their applications to turbulence. Ann Rev Fluid Mech 24:395–457CrossRefMathSciNetGoogle Scholar
  7. Farge M, Schneider K (2001) Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets. Flow Turbul Combust 66(4):393–426CrossRefzbMATHMathSciNetGoogle Scholar
  8. Fröhlich J, Schneider K (1997) An adaptive wavelet–vaguelette algorithm for the solution of PDEs. J Comput Phys 130:174–190CrossRefzbMATHMathSciNetGoogle Scholar
  9. Higuchi H, Balligand H, Strickland JH (1996) Numerical and experimental investigations of the flow over a disk undergoing unsteady motion. J Fluids Struct 10(7):705–719CrossRefGoogle Scholar
  10. Keetels GH, d’Ortona U, Kramer W, Clercx HJH, Schneider K, van Heijst GJF (2007) Fourier spectral and wavelet solvers for the incompressible Navier–Stokes equations with volume penalization: convergence of a dipole-wall collision. J Comput Phys 227:919–945CrossRefzbMATHMathSciNetGoogle Scholar
  11. Kevlahan N, Ghidaglia J-M (2001) Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization. Eur J Mech B 20:333–350CrossRefzbMATHGoogle Scholar
  12. Khadra K, Parneix S, Angot P, Caltagirone J-P (2000) Fictious domain approach for numerical modelling of Navier–Stokes equations. Int J Num Meth Fluids 34:651–684CrossRefzbMATHGoogle Scholar
  13. Kolomenskiy D, Schneider K (2009) A Fourier spectral method for the Navier–Stokes equations with volume penalisation for moving solid obstacles. J Comput Phys 228:5687–5709CrossRefzbMATHMathSciNetGoogle Scholar
  14. Koumoutsakos P, Shiels D (1996) Simulations of the viscous flow normal to an impulsively started and uniformely accelerated flat plate. J Fluid Mech 328:177–227CrossRefzbMATHGoogle Scholar
  15. Luchini P, Tognaccini R (1999) Comparison of viscous and inviscid numerical simulations of the start-up vortex issuing from a semi-infinite flat plate. ESAIM Proc 7:247–257CrossRefzbMATHGoogle Scholar
  16. Luchini P, Tognaccini R (2002) The start-up vortex issuing from a semi-infinite flat plate. J Fluid Mech 455:175–193CrossRefzbMATHMathSciNetGoogle Scholar
  17. Moore DW (1976) The stability of an evolving two-dimensional vortex sheet. Mathematica 23:35–44zbMATHGoogle Scholar
  18. Nitsche M (1996) Scaling properties of vortex ring formation at a circular tube opening. Phys Fluids 8(7):1848–1855CrossRefzbMATHGoogle Scholar
  19. Peyret R (2002) Spectral methods for incompressible viscous flow, vol 148. Springer, BerlinGoogle Scholar
  20. Pierce D (1961) Photographic evidence of the formation and growth of vorticity behind plates accelerated from rest in still air. J Fluid Mech 11:460–464CrossRefzbMATHGoogle Scholar
  21. Prandtl L (1905) Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen des III internationalen Mathematiker Kongresses (Heidelberg, 1904), LeipzigGoogle Scholar
  22. Pullin DI (1978) The large scale structure of unsteady self-similar rolled-up vortex sheet. J Fluid Mech 88:401–430CrossRefzbMATHMathSciNetGoogle Scholar
  23. Pullin DI, Perry AE (1980) Some flow visualization experiments on the starting vortex. J Fluid Mech 97:239–255CrossRefGoogle Scholar
  24. Saffman PG (1995) Vortex dynamics. Cambridge University Press, CambridgeGoogle Scholar
  25. Schneider K, Farge M (2002) Adaptive wavelet simulation of a flow around an impulsively started cylinder using penalisation. Appl Comput Harm Anal 12:374–380CrossRefzbMATHMathSciNetGoogle Scholar
  26. Schneider K (2005) Numerical simulation of the transient flow behaviour in chemical reactors using a penalisation method. Comput Fluids 34(7):1223–1238CrossRefzbMATHGoogle Scholar
  27. Schneider K, Farge M (2005) Numerical simulation of the transient flow behaviour in tube bundles using a volume penalisation method. J Fluids Struct 20(4):555–566CrossRefGoogle Scholar
  28. Schneider K, Vasilyev M (2010) Wavelet methods in computational fluid dynamics. Annu Rev Fluid Mech 42:473–503CrossRefMathSciNetGoogle Scholar
  29. Wang ZJ, Liu JG, Childress S (1999) Connection between corner vortices and shear layer instability in flow past an ellipse. Phys Fluids 11(9):2446–2448CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2014

Authors and Affiliations

  • Kai Schneider
    • 1
  • Mickaël Paget-Goy
    • 2
  • Alberto Verga
    • 3
  • Marie Farge
    • 4
  1. 1.M2P2-CNRS, Aix-Marseille Université Marseille Cedex 20France
  2. 2.M2P2-CNRS, Aix-Marseille Université Marseille Cedex 20France
  3. 3.IM2NP-CNRS, Aix-Marseille UniversitéAvenue Escadrille Normandie Niemen Marseille Cedex 20France
  4. 4.LMD-CNRS, Ecole Normale Supérieure Paris Cedex 05France

Personalised recommendations