Advertisement

Computational and Applied Mathematics

, Volume 34, Issue 1, pp 1–16 | Cite as

Laplace transform-homotopy perturbation method as a powerful tool to solve nonlinear problems with boundary conditions defined on finite intervals

  • U. Filobello-Nino
  • H. Vazquez-Leal
  • Y. Khan
  • A. Perez-Sesma
  • A. Diaz-Sanchez
  • V. M. Jimenez-Fernandez
  • A. Herrera-May
  • D. Pereyra-Diaz
  • J. M. Mendez-Perez
  • J. Sanchez-Orea
Article

Abstract

This article proposes Laplace transform-homotopy perturbation method (LT-HPM) to solve nonlinear differential equations with Dirichlet, mixed, and Neumann boundary conditions. After comparing figures between approximate and exact solutions, we will see that the proposed solutions are of high accuracy and, therefore, that LT-HPM is extremely efficient.

Keywords

Homotopy perturbation method Nonlinear differential equation Approximate solutions Laplace transform Laplace transform homotopy perturbation method Dirichlet Boundary condition Neumann boundary condition Gelfand’s differential equation 

Mathematics Subject Classification (2000)

34L30 

References

  1. Adomian G (1988) A review of decomposition method in applied mathematics. Math Anal Appl 135:501–544CrossRefzbMATHMathSciNetGoogle Scholar
  2. Aminikhah H (2011) Analytical approximation to the solution of nonlinear Blasius viscous flow equation by LTNHPM. International Scholarly Research Network ISRN Mathematical Analysis, vol 2012, Article ID 957473. doi: 10.5402/2012/957473
  3. Aminikhah H (2012) The combined Laplace transform and new homotopy perturbation method for stiff systems of ODE’s. Appl Math Model 36:3638–3644CrossRefzbMATHMathSciNetGoogle Scholar
  4. Aminikhan H, Hemmatnezhad M (2012) A novel effective approach for solving nonlinear heat transfer equations. Heat Transf Asian Res 41(6):459–466CrossRefGoogle Scholar
  5. Assas LMB (2007) Approximate solutions for the generalized K-dV–Burgers’ equation by He’s variational iteration method. Phys Scr 76:161–164. doi: 10.1088/0031-8949/76/2/008 CrossRefzbMATHGoogle Scholar
  6. Babolian E, Biazar J (2002) On the order of convergence of Adomian method. Appl Math Comput 130(2):383–387. doi: 10.1016/S0096-3003(01)00103-5 CrossRefzbMATHMathSciNetGoogle Scholar
  7. Belendez A, Pascual C, Alvarez ML, Méndez DI, Yebra MS, Hernández A (2009) High order analytical approximate solutions to the nonlinear pendulum by He’s homotopy method. Physica Scripta 79(1):1–24. doi: 10.1088/0031-8949/79/01/015009 CrossRefGoogle Scholar
  8. Biazar J, Aminikhan H (2009) Study of convergence of homotopy perturbation method for systems of partial differential equations. Comput Math Appl 58(11–12): 2221–2230Google Scholar
  9. Biazar J, Ghazvini H (2009) Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Anal Real World Appl 10(5): 2633–2640Google Scholar
  10. Chowdhury SH (2011) A comparison between the modified homotopy perturbation method and Adomian decomposition method for solving nonlinear heat transfer equations. J Appl Sci 11:1416–1420. doi: 10.3923/jas.2011.1416.1420 CrossRefGoogle Scholar
  11. El-Shaed M (2005) Application of He’s homotopy perturbation method to Volterra’s integro differential equation. Int J Nonlinear Sci Numer Simul 6:163–168MathSciNetGoogle Scholar
  12. Evans DJ, Raslan KR (2005) The Tanh function method for solving some important nonlinear partial differential. Int J Comput Math 82:897–905. doi: 10.1080/00207160412331336026 CrossRefzbMATHMathSciNetGoogle Scholar
  13. Fereidon A, Rostamiyan Y, Akbarzade M, Ganji DD (2010) Application of He’s homotopy perturbation method to nonlinear shock damper dynamics. Arch Appl Mech 80(6): 641–649. doi: 10.1007/s00419-009-0334-x Google Scholar
  14. Filobello-Nino U, Vazquez-Leal H, Castaneda-Sheissa R, Yildirim A, Hernandez Martinez L, Pereyra Diaz D, Perez Sesma A, Hoyos Reyes C (2012) An approximate solution of Blasius equation by using HPM method. Asian J Math Stat 2012: 10. doi: 10.3923/ajms.2012. ISSN 1994-5418
  15. Filobello-Nino U, Vazquez-Leal H, Khan Y, Yildirim A, Jimenez-Fernandez VM, Herrera May AL, Castaneda-Sheissa R, Cervantes-Perez J (2013) Using perturbation methods and Laplace-Padé approximation to solve nonlinear problems. Miskolc Mathematical Notes 14(1):89–101. e-ISSN: 1787–2413Google Scholar
  16. Filobello-Nino U, Vazquez-Leal H, Khan Y, Yildirim A, Pereyra-Diaz D, Perez-Sesma A, Hernandez-Martinez L, Sanchez-Orea J, Castaneda-Sheissa R, Rabago-Bernal F (2012) HPM applied to solve nonlinear circuits: a study case. Appl Math Sci 6(85–88):4331–4344Google Scholar
  17. Ganji DD, Babazadeh H, Noori F, Pirouz MM, Janipour M (2009) An application of homotopy perturbation method for non linear Blasius equation to boundary layer flow over a flat plate, ACADEMIC World Academic Union, ISNN 1749–3889 (print), 1749–3897 (online). Int J Nonlinear Sci 7(4):309–404Google Scholar
  18. Ganji DD, Mirgolbabaei H, Miansari Me, Miansari Mo (2008) Application of homotopy perturbation method to solve linear and non-linear systems of ordinary differential equations and differential equation of order three. J Appl Sci 8:1256–1261. doi: 10.3923/jas.2008.1256.1261 Google Scholar
  19. He JH (2000) A coupling method of a homotopy technique and a perturbation technique for nonlinear problems. Int J Non-Linear Mech 35(1): 37–43. doi:  10.1016/S0020-7462(98)00085-7 Google Scholar
  20. He JH (2006) Some asymptotic methods for strongly nonlinear equations. Int J Modern Phys B 20(10):1141–1199Google Scholar
  21. He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178:257–262. doi: 10.1016/S0045-7825(99)00018-3 CrossRefzbMATHGoogle Scholar
  22. He JH (2006) Homotopy perturbation method for solving boundary value problems. Phys Lett A 350(1–2):87–88CrossRefzbMATHMathSciNetGoogle Scholar
  23. He JH (2006) Some asymptotic methods for strongly nonlinear equations. Int J Modern Phys B 20(10):1141–1199. doi: 10.1142/S0217979206033796 CrossRefzbMATHGoogle Scholar
  24. He JH (2007) Variational approach for nonlinear oscillators. Chaos Solitons Fractals 34:1430–1439. doi: 10.1016/j.chaos.2006.10.026 CrossRefzbMATHMathSciNetGoogle Scholar
  25. He JH (2008) Recent development of the homotopy perturbation method. Topol Methods Nonlinear Anal 31(2):205–209zbMATHMathSciNetGoogle Scholar
  26. Kazemnia M, Zahedi SA, Vaezi M, Tolou N (2008) Assessment of modified variational iteration method in BVPs high-order differential equations. J Appl Sci 8:4192–4197. doi: 10.3923/jas.2008.4192.4197 CrossRefGoogle Scholar
  27. Khan Y, Qingbiao W (2011) Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput Math Appl 61(8):1963–1967CrossRefzbMATHMathSciNetGoogle Scholar
  28. Khan M, Gondal MA, Vanani K (2011) A new study between homotopy analysis method and homotopy perturbation transform method on a semi infinite domain. Math Comput Model 55:1143–1150CrossRefMathSciNetGoogle Scholar
  29. Kooch A, Abadyan M (2011) Evaluating the ability of modified Adomian decomposition method to simulate the instability of freestanding carbon nanotube: comparison with conventional decomposition method. J Appl Sci 11:3421–3428. doi: 10.3923/jas.2011.3421.3428 Google Scholar
  30. Kooch A, Abadyan M (2012) Efficiency of modified Adomian decomposition for simulating the instability of nano-electromechanical switches: comparison with the conventional decomposition method. Trends Appl Sci Res 7:57–67. doi: 10.3923/tasr.2012.57.67 CrossRefGoogle Scholar
  31. Madani M, Fathizadeh M, Khan Y, Yildirim A (2011) On the coupling of the homotopy perturbation method and Laplace transformation. Math Comput Model 53(9–10):1937–1945CrossRefzbMATHMathSciNetGoogle Scholar
  32. Mahmoudi J, Tolou N, Khatami I, Barari A, Ganji DD (2008) Explicit solution of nonlinear ZK-BBM wave equation using exp-function method. J Appl Sci 8:358–363. doi: 10.3923/jas.2008.358.363 CrossRefGoogle Scholar
  33. Murray RS (1988) Teoría y Problemas de Transformadas de Laplace, primera edición. Serie de compendios SchaumGoogle Scholar
  34. Noorzad R, Tahmasebi Poor A, Omidvar M (2008) Variational iteration method and homotopy-perturbation method for solving Burgers equation in fluid dynamics. J Appl Sci 8:369–373. doi: 10.3923/jas.2008.369.373 CrossRefGoogle Scholar
  35. Patel T, Mehta MN, Pradhan VH (2012) The numerical solution of Burger’s equation arising into the irradiation of tumour tissue in biological diffusing system by homotopy analysis method. Asian J Appl Sci 5:60–66. doi: 10.3923/ajaps.2012.60.66 CrossRefGoogle Scholar
  36. Sharma PR, Methi G (2011) Applications of homotopy perturbation method to partial differential equations. Asian J Math Stat 4:140–150. doi: 10.3923/ajms.2011.140.150 CrossRefGoogle Scholar
  37. Vanani SK, Heidari S, Avaji M (2011) A low-cost numerical algorithm for the solution of nonlinear delay boundary integral equations. J Appl Sci 11:3504–3509. doi: 10.3923/jas.2011.3504.3509 CrossRefGoogle Scholar
  38. Vasile M, Nicolae H (2011) Nonlinear dynamical systems in engineering, 1 st edn. Springer, BerlinGoogle Scholar
  39. Vazquez-Leal H, Castañeda-Sheissa R, Filobello-Nino U, Sarmiento-Reyes A, Sánchez-Orea J (2012) High accurate simple approximation of normal distribution related integrals. Mathematical Problems in Engineering, vol. 2012, Article ID 124029. doi:  10.1155/2012/124029
  40. Vazquez-Leal H, Filobello-Niño U, Castañeda-Sheissa R, Hernandez Martinez L, Sarmiento-Reyes A (2012a) Modified HPMs inspired by homotopy continuation methods. Mathematical Problems in Engineering, vol. 2012, Article ID 309123. doi: 10.155/2012/309123
  41. Xu F (2007) A generalized soliton solution of the Konopelchenko–Dubrovsky equation using exp-function method. Zeitschrift Naturforschung: Sect A J Phys Sci 62(12):685–688zbMATHGoogle Scholar
  42. Zhang L-N, Xu L (2007) Determination of the limit cycle by He’s parameter expansion for oscillators in a \(u^3/1+u^2\) potential. Zeitschrift für Naturforschung: Sect A J Phys Sci 62(7–8):396–398zbMATHGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2013

Authors and Affiliations

  • U. Filobello-Nino
    • 1
  • H. Vazquez-Leal
    • 1
  • Y. Khan
    • 2
  • A. Perez-Sesma
    • 1
  • A. Diaz-Sanchez
    • 3
  • V. M. Jimenez-Fernandez
    • 1
  • A. Herrera-May
    • 4
  • D. Pereyra-Diaz
    • 1
  • J. M. Mendez-Perez
    • 1
  • J. Sanchez-Orea
    • 1
  1. 1.Electronic Instrumentation and Atmospheric Sciences SchoolUniversity of VeracruzXalapaMexico
  2. 2.Department of MathematicsZhejiang UniversityHangzhouChina
  3. 3.National Institute for Astrophysics, Optics and ElectronicsPueblaMexico
  4. 4.Micro and Nanotechnology Research CenterUniversity of VeracruzBoca del RioMexico

Personalised recommendations