Computational and Applied Mathematics

, Volume 33, Issue 2, pp 411–431 | Cite as

Shape-preserving trigonometric functions

  • Malik Zawwar Hussain
  • Maria Hussain
  • Amna Waseem
Article

Abstract

A control point form of quadratic trigonometric function is developed which obeys all the properties of Bézier curve. To preserve the shape of data, the quadratic trigonometric functions are transformed into \(GC^1\)-interpolating functions. The \(GC^1\)-interpolating functions have two free parameters in each subinterval to control the magnitude and direction of the tangent at the end points interval. Constraints are derived on these free parameters to interpolate positive, monotone and convex data. The order of approximation of developed interpolant is investigated as \(O( {h_{i}^{3}})\).

Keywords

Shape preservation Trigonometric function Bézier curve Error estimation 

Mathematics Subject Classification (2000)

68U05 65D05 65D07 65D18 

References

  1. Butt S, Brodlie KW (1993) Preserving positivity using piecewise cubic interpolation. Comput Graph 17(1):55–64Google Scholar
  2. Duan Q, Zhang H, Zhang Y, Twizell EH (2007) Error estimation of a kind of rational spline. J Comput Appl Math 20(1):1–11CrossRefMathSciNetGoogle Scholar
  3. Duan Q, Bao F, Du S, Twizell EH (2009) Local control of interpolating rational cubic spline curves. Comput Aided Des 41:825–829CrossRefGoogle Scholar
  4. Fritsch FN, Butland J (1984) A method for constructing local monotone piecewise cubic interpolants. SIAM J Sci Stat Comput 5:300–304CrossRefMATHMathSciNetGoogle Scholar
  5. Fuhr RD, Kallay M (1992) Monotone linear rational spline interpolation. Comput Aided Geom Design 9(4):313–319CrossRefMATHMathSciNetGoogle Scholar
  6. Goodman TNT (2002) Shape preserving interpolation by curves. In: Levesley J, Anderson IJ, Mason JC (eds.) Algorithms for approximation, vol 4. University of Huddersfield Proceeding Published, Huddersfield, pp 24–35Google Scholar
  7. Han X-A, Ma Y, Haung X (2009) The cubic trigonometric Bézier curve with two parameters. Appl Math Lett 22:226–231CrossRefMATHMathSciNetGoogle Scholar
  8. Higham DJ (1992) Monotone piecewise cubic interpolation with applications to ODE plotting. J Comput Appl Math 39(3–8):287–294CrossRefMATHMathSciNetGoogle Scholar
  9. Hussain MZ, Sarfraz M (2008) Positivity-preserving interpolation of positive data by rational cubics. J Comput Appl Math 218(2):446–458CrossRefMATHMathSciNetGoogle Scholar
  10. Hussain MZ, Sarfraz M (2009) Monotone piecewise rational cubic interpolation. Int J Comput Math 86(3):423–430CrossRefMATHMathSciNetGoogle Scholar
  11. Lamberti P, Manni C (2001) Shape-preserving \(C^2\) functional interpolation via parametric cubics. Numer Algorithms 28:229–254CrossRefMATHMathSciNetGoogle Scholar
  12. Sarfraz M (1992) Convexity preserving piecewise rational interpolation for planar curves. Bull Korean Math Soc 29(2):193–200MATHMathSciNetGoogle Scholar
  13. Verlan I (2010) Convexity preserving interpolation by splines of arbitrary degree. Comput Sci J Maldova 18(1):54–58MATHMathSciNetGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2013

Authors and Affiliations

  • Malik Zawwar Hussain
    • 1
  • Maria Hussain
    • 2
  • Amna Waseem
    • 1
  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan
  2. 2.Department of MathematicsLahore College for Women UniversityLahorePakistan

Personalised recommendations