Advertisement

Analysis of Double-Star Modular Multilevel Topologies Applied in HVDC System for Grid Connection of Offshore Wind Power Plants

  • William Caires Silva Amorim
  • Dayane do Carmo Mendonça
  • Renata Oliveira de Sousa
  • Allan Fagner Cupertino
  • Heverton Augusto PereiraEmail author
Article
  • 54 Downloads

Abstract

Reducing costs related to passive elements and ensuring ability to handle short-circuit faults are essential for a reliable and cost-effective operation of modular multilevel converters (MMCs) in high-voltage direct current (HVDC) systems. HVDC systems have emerged in offshore wind power plants (OWPP), as an attractive solution to connect OWPP to the main ac system. To address these challenges, this paper carries out a benchmarking of double-star (DS) MMC topologies applied to OWPP. In this sense, comparisons among DS topologies of the DSCC (double-star chopper cell), DSBC (double-star bridge cell) and DSHyb (double-star hybrid) types are proposed. Quantitative analyses are performed, considering an OWPP of 100 MW. In the results, the topologies are compared for steady-state operation and active power dynamics. In addition, power losses and junction temperature through a one-year OWPP mission profile are analyzed. Due to dc fault tolerance and capacity to synthesize two times the converter output voltage in comparison with the DSCC, DSBC and DSHyb are best suited in HVDC systems. However, DSHyb stands out in terms of converter efficiency and capacitor energy storage. Thus, DSHyb proves to be a promising topology to connect OWPP to the ac system.

Keywords

Double-star topologies Modular multilevel converter High-voltage direct current Offshore wind power plant 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

References

  1. Akagi, H., Watanabe, E. H., & Aredes, M. (2007). The instantaneous power theory. Hoboken: Wiley-IEEE Press.CrossRefGoogle Scholar
  2. Apostolaki-Iosifidou, E., Mccormack, R., Kempton, W., Mccoy, P., & Ozkan, D. (2019). Transmission design and analysis for large-scale offshore wind energy development. IEEE Power and Energy Technology Systems, 6(1), 22–31.CrossRefGoogle Scholar
  3. Arslan, A. O., Eroğlu, F., Kurtoğlu, M., Vural, A. M. (2018). Effect of arm inductance on efficiency of modular multilevel converter. ISMSIT (pp. 1–4).Google Scholar
  4. Batista, R. C., Nicolini, A. M., Carnielutti, F. d. M., Pinheiro, H. (2017). Analysis of modular multilevel converters for HVDC connection of offshore wind power plants. In COBEP (pp. 1–7).Google Scholar
  5. Cupertino, A. F., Farias, J. V. M., Pereira, H. A., Seleme, S. I., Teodorescu, R. (2018). DSCC-MMC STATCOM main circuit parameters design considering positive and negative sequence compensation. JCAES (pp. 62–74).CrossRefGoogle Scholar
  6. Dong, P., Lyu, J., & Cai, X. (2018). Optimized design and control for hybrid MMC with reduced capacitance requirements. IEEE Access, 6, 51069–51083.CrossRefGoogle Scholar
  7. Dong, Y., Tang, J., Yang, H., Li, W., & He, X. (2019). Capacitor voltage balance control of hybrid modular multilevel converters with second-order circulating current injection. IEEE Journal of Emerging and Selected Topics in Power Electron, 7(1), 157–167.CrossRefGoogle Scholar
  8. Ghat, M. B., Shukla, A., & Mathew, E. C. (2017). A new hybrid modular multilevel converter with increased output voltage levels. In ECCE (pp. 1634–1641).Google Scholar
  9. Harnefors, L., Antonopoulos, A., Norrga, S., Angquist, L., & Nee, H. P. (2013). Dynamic analysis of modular multilevel converters. IEEE Transactions on Industrial Electronics, 60(7), 2526–2537.CrossRefGoogle Scholar
  10. He, L., Zhang, K., Xiong, J., Fan, S., Xue, Y. (2016). Low-Frequency Ripple Suppression for Medium Voltage Drives Using Modular Multilevel Converter With Full-Bridge Submodules. In IEEE Journal of Emerging and Selected Topics in Power Electron (pp. 657–667).Google Scholar
  11. Hofmann, V., & Bakran, M. (2017). Four-Level MMC Cell Type with DC Fault Blocking Capability for HVDC. PCIM Europe. PCIM (pp. 1–9).Google Scholar
  12. Jovcic, D., Lin, W., Nguefeu, S., & Saad, H. (2017). Full bridge MMC converter controller for HVDC operation in normal and DC fault conditions. In Ee (pp. 1–6).Google Scholar
  13. Jung, J., Cui, S., Lee, J., & Sul, S. (2017). A new topology of multilevel VSC converter for a hybrid HVDC transmission system. In IEEE transactions on power electron (pp. 4199–4209).Google Scholar
  14. Li, J., Konstantinou, G., Wickramasinghe, H. R., & Pou, J. (2019). Operation and control methods of modular multilevel converters in unbalanced AC grids: A review. IEEE Journal of Emerging and Selected Topics in Power Electron, 7(2), 1258–1271.CrossRefGoogle Scholar
  15. Ouyang, J., Li, M., Zhang, Z., & Tang, T. (2019). Multi-timescale active and reactive power-coordinated control of large-scale wind integrated power system for severe wind speed fluctuation. IEEE Access, 7, 51201–51210.CrossRefGoogle Scholar
  16. Sharifabadi, K., Harnefors, L., Nee, H., Norrga, S., & Teodorescu, R. (2016). Design, control and application of modular multilevel converters for HVDC transmission systems. Hoboken: Wiley.CrossRefGoogle Scholar
  17. Tizgui, I., Bouzahir, H., Guezar, F. E., Benaid, B. (2017). Wind speed extrapolation and wind power assessment at different heights. 2017 ICEIT Rabat (pp. 1–4).Google Scholar
  18. Wang, C., Meng, J., Wang, Y. (2016). Modified carrier phase shifted spwm for a hybrid modular multilevel converter with hbsms and fbsms. In IPEMC-ECCE (pp. 1123–1127).Google Scholar
  19. Xu, J., Zhao, P., & Zhao, C. (2016). Reliability analysis and redundancy configuration of mmc with hybrid submodule topologies. IEEE Transactions on Power Electron, 31(4), 2720–2729.Google Scholar
  20. Yang, W., Song, Q., Xu, S., Rao, H., & Liu, W. (2018). An mmc topology based on unidirectional current h-bridge submodule with active circulating current injection. IEEE Transactions on Power Electron, 33(5), 3870–3883.CrossRefGoogle Scholar
  21. Yepes, A. G., Freijedo, F. D., Lopez, Ó., Doval-Gandoy, J. (2011). Analysis and Design of Resonant Current Controllers for Voltage-Source Converters by Means of Nyquist Diagrams and Sensitivity Function. In IEEE Transactions on Industrial Electronics (pp. 5231–5250).CrossRefGoogle Scholar
  22. Zeng, R., Xu, L., Yao, L., & Williams, B.W. (2015). Design and operation of a hybrid modular multilevel converter. In IEEE Transactions on Power Electron (pp. 1137–1146).Google Scholar
  23. Zhao, C., Li, Y., Konstantinou, G., Li, Z., Wang, P., Lei, M., Xu, F., Liu, Z. (2017). Energy storage requirements of full-bridge modular multilevel converter with zero sequence voltage injection. IECON - 43rd (pp. 4512–4517).Google Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.Graduate Program in Electrical EngineeringFederal Center for Technological Education of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Materials EngineeringFederal Center for Technological Education of Minas GeraisBelo HorizonteBrazil
  3. 3.Department of Electrical EngineeringUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations