Advertisement

Redundancy and Derating Strategies for Modular Multilevel Converter for an Electric Drive

  • Paulo Roberto Matias JúniorEmail author
  • João Victor Matos Farias
  • Allan Fagner Cupertino
  • Heverton Augusto Pereira
  • Marcelo Martins Stopa
  • José Tarcísio de Resende
Article
  • 41 Downloads

Abstract

Reliability is an important issue in medium-voltage electrical drives. The modular multilevel converter (MMC) is an inherently fault-tolerant topology and an interesting solution when quadratic loads are used. Redundancy strategies can be used to extend system failure capability. The strategies presented in the literature affect the dynamic performance and the power losses of the MMC. In addition, for isolated and inaccessible areas, such as ore slurry pumps, which are widely used in mining industries, the maintenance time and cost are high. This paper compares four redundancy strategies applied in a MMC for an electric drive and presents a derating strategy to maintain the system operating after a greater number of failures. The results showed that hot redundancy schemes have less impact on the dynamic performance of the system than the strategy that operates with the nominal submodule number. Besides, hot redundancy presents up to 14.72% more power losses. For quadratic loads, such as the ore slurry pump, it was concluded that, for 14% of failures, the speed reference should be reduced to at least 28% in order to keep the system operating.

Keywords

Modular multilevel converter Electric drives Redundancy Derating 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

References

  1. Achiri, H. M. N., Smidl, V., & Peroutka, Z. (2015). Mitigation of electric drive train oscillation resulting from abrupt current derating at low coolant flow rate. In IECON 2015—41st annual conference of the IEEE industrial electronics society (pp. 003638–003642).Google Scholar
  2. Ahmed, N., Ängquist, L., Antonopoulos, A., Harnefors, L., Norrga, S., & Nee, H. P. (2015). Performance of the modular multilevel converter with redundant submodules. In IECON 2015—41st annual conference of the IEEE industrial electronics society (pp. 003922–003927).Google Scholar
  3. Akagi, H. (2017). Multilevel converters: Fundamental circuits and systems. Proceedings of the IEEE, 105(11), 2048–2065.CrossRefGoogle Scholar
  4. Antonopoulos, A., Ängquist, L., Norrga, S., Ilves, K., Harnefors, L., & Nee, H. P. (2014). Modular multilevel converter AC motor drives with constant torque from zero to nominal speed. IEEE Transactions on Industry Applications, 50(3), 1982–1993.CrossRefGoogle Scholar
  5. Choi, J., Han, B., & Kim, H. (2016). New scheme of phase-shifted carrier pwm for modular multilevel converter with redundancy submodules. IEEE Transactions on Power Delivery, 31(1), 407–409.CrossRefGoogle Scholar
  6. DOVE. (2019). Pumps and systems—slurry pumps. https://dovemining.com/gravel-pumps/. Accessed May 30, 2019.
  7. Farias, J. V. M., Cupertino, A. F., Pereira, H. A., Junior, S. I. S., & Teodorescu, R. (2018). On the redundancy strategies of modular multilevel converters. IEEE Transactions on Power Delivery, 33(2), 851–860.CrossRefGoogle Scholar
  8. Gemmell, B., Dorn, J., Retzmann, D., & Soerangr, D. (2008). Prospects of multilevel VSC technologies for power transmission. In IEEE/PES transmission and distribution conference and exposition (pp. 1–16).Google Scholar
  9. Hagiwara, M., & Akagi, H. (2009). Control and experiment of pulsewidth-modulated modular multilevel converters. IEEE Transactions on Power Electronics, 24(7), 1737–1746.CrossRefGoogle Scholar
  10. Hagiwara, M., Hasegawa, I., & Akagi, H. (2013). Start-up and low-speed operation of an electric motor driven by a modular multilevel cascade inverter. IEEE Transactions on Industry Applications, 49(4), 1556–1565.CrossRefGoogle Scholar
  11. Hagiwara, M., Nishimura, K., & Akagi, H. (2010). A medium-voltage motor drive with a modular multilevel PWM inverter. IEEE Transactions on Power Electronics, 25(7), 1786–1799.CrossRefGoogle Scholar
  12. Hammond, P. W. (1997). A new approach to enhance power quality for medium voltage AC drives. IEEE Transactions on Industry Applications, 33(1), 202–208.CrossRefGoogle Scholar
  13. Harnefors, L., Antonopoulos, A., Norrga, S., Angquist, L., & Nee, H. P. (2013). Dynamic analysis of modular multilevel converters. IEEE Transactions on Industrial Electronics, 60(7), 2526–2537.CrossRefGoogle Scholar
  14. Kawamura, W., Chen, K. L., Hagiwara, M., & Akagi, H. (2015). A low-speed, high-torque motor drive using a modular multilevel cascade converter based on triple-star bridge cells (MMCC-TSBC). IEEE Transactions on Industry Applications, 51(5), 3965–3974.CrossRefGoogle Scholar
  15. Konstantinou, G. S., Ciobotaru, M., & Agelidis, V. G. (2012). Effect of redundant sub-module utilization on modular multilevel converters. In IEEE international conference on industrial technology (pp. 815–820).Google Scholar
  16. Kouro, S., Rodriguez, J., Wu, B., Bernet, S., & Perez, M. (2012). Powering the future of industry: High-power adjustable speed drive topologies. IEEE Industry Applications Magazine, 18(4), 26–39.CrossRefGoogle Scholar
  17. Kumar, Y. S., & Poddar, G. (2017). Control of medium-voltage AC motor drive for wide speed range using modular multilevel converter. IEEE Transactions on Industrial Electronics, 64(4), 2742–2749.CrossRefGoogle Scholar
  18. Kumar, Y. S., & Poddar, G. (2018). Medium-voltage vector control induction motor drive at zero frequency using modular multilevel converter. IEEE Transactions on Industrial Electronics, 65(1), 125–132.CrossRefGoogle Scholar
  19. Liu, G., Xu, Z., Xue, Y., & Tang, G. (2015). Optimized control strategy based on dynamic redundancy for the modular multilevel converter. IEEE Transactions on Power Electronics, 30(1), 339–348.CrossRefGoogle Scholar
  20. Li, B., Zhang, Y., Yang, R., Xu, R., Xu, D., & Wang, W. (2015). Seamless transition control for modular multilevel converters when inserting a cold-reserve redundant submodule. IEEE Transactions on Power Electronics, 30(8), 4052–4057.CrossRefGoogle Scholar
  21. Li, B., Zhou, S., Xu, D., Finney, S. J., & Williams, B. W. (2017). A hybrid modular multilevel converter for medium-voltage variable-speed motor drives. IEEE Transactions on Power Electronics, 32(6), 4619–4630.CrossRefGoogle Scholar
  22. Maharjan, L., Yamagishi, T., Akagi, H., & Asakura, J. (2010). Fault-tolerant operation of a battery-energy-storage system based on a multilevel cascade PWM converter with star configuration. IEEE Transactions on Power Electronics, 25(9), 2386–2396.CrossRefGoogle Scholar
  23. Meynard, T. A., Foch, H., Thomas, P., Courault, J., Jakob, R., & Nahrstaedt, M. (2002). Multicell converters: Basic concepts and industry applications. IEEE Transactions on Industrial Electronics, 49(5), 955–964.CrossRefGoogle Scholar
  24. Novotny, D. W., & Lipo, T. (1996). Vector control and dynamics of AC drives. Oxford: Clarendon Press.Google Scholar
  25. Saad, H., Guillaud, X., Mahseredjian, J., Dennetière, S., & Nguefeu, S. (2015). Mmc capacitor voltage decoupling and balancing controls. IEEE Transactions on Power Delivery, 30(2), 704–712.CrossRefGoogle Scholar
  26. Sahoo, S. K., & Bhattacharya, T. (2018). Phase-shifted carrier-based synchronized sinusoidal PWM techniques for a cascaded h-bridge multilevel inverter. IEEE Transactions on Power Electronics, 33(1), 513–524.CrossRefGoogle Scholar
  27. Song, W., & Huang, A. Q. (2010). Fault-tolerant design and control strategy for cascaded h-bridge multilevel converter-based statcom. IEEE Transactions on Industrial Electronics, 57(8), 2700–2708.CrossRefGoogle Scholar
  28. Song, Y., & Wang, B. (2013). Survey on reliability of power electronic systems. IEEE Transactions on Power Electronics, 28(1), 591–604.CrossRefGoogle Scholar
  29. Son, G. T., Lee, H. J., Nam, T. S., Chung, Y. H., Lee, U. H., Baek, S. T., et al. (2012). Design and control of a modular multilevel HVDC converter with redundant power modules for noninterruptible energy transfer. IEEE Transactions on Power Delivery, 27(3), 1611–1619.CrossRefGoogle Scholar
  30. Vernica, I., Ma, K., & Blaabjerg, F. (2018). Optimal derating strategy of power electronics converter for maximum wind energy production with lifetime information of power devices. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(1), 267–276.CrossRefGoogle Scholar
  31. Wang, B., Wang, X., Bie, Z., Judge, P. D., Wang, X., & Green, T. C. (2017). Reliability model of MMC considering periodic preventive maintenance. IEEE Transactions on Power Delivery, 32(3), 1535–1544.CrossRefGoogle Scholar
  32. Wu, B., & Narimani, N. (2017). High-power converters and AC drives. Hoboken: Willey IEEE Press.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  • Paulo Roberto Matias Júnior
    • 1
    Email author
  • João Victor Matos Farias
    • 1
  • Allan Fagner Cupertino
    • 2
    • 3
  • Heverton Augusto Pereira
    • 4
  • Marcelo Martins Stopa
    • 5
  • José Tarcísio de Resende
    • 4
  1. 1.Graduate Program in Electrical EngineeringFederal Center for Technological Education of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Materials EngineeringFederal Center for Technological Education of Minas GeraisBelo HorizonteBrazil
  3. 3.Graduate Program in Electrical EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Department of Electrical EngineeringUniversidade Federal de ViçosaViçosaBrazil
  5. 5.Department of Electrical EngineeringFederal Center for Technological Education of Minas GeraisBelo HorizonteBrazil

Personalised recommendations