Advertisement

Parametric and Nonparametric Bayesian Filters for Autonomous Underwater Vehicle Localization

  • Rodrigo P. FrançaEmail author
  • Guilherme A. Pimentel
  • Aurélio T. Salton
Article
  • 6 Downloads

Abstract

This work presents a comparison between parametric and nonparametric localization methods for autonomous underwater vehicles based on two classes of Bayesian filters for sensor fusion: the Particle Filter and the Extended Kalman Filter. In order to develop a localization method that does not require external sensors, the terrain-based localization technique is studied, which uses the particle filter and bathymetric information regarding the terrain. While promising, this approach has poor precision in regions with small depth variations. In order to improve this methodology, two solutions are presented: a software-based solution which uses a trajectory generation algorithm that limits the vehicle navigation to regions of the map with large depth variation, and a hardware-based solution which uses GPS intelligent buoy sensors. In order to analyze the convergence performance of the terrain-based localization with the trajectory generation algorithm, Monte Carlo simulations are performed with different quantities of particles. For comparison purposes, an Extended Kalman Filter fusing an inertial measurement unit and GPS intelligent buoys are also analyzed. Simulation results show that the triangulation-based approach achieves an improved performance, at the cost of extra sensors.

Keywords

Localization Particle filter Extended Kalman filter Trajectory generation Autonomous underwater vehicle 

Notes

References

  1. Chaves, E. R, Jr., André, F. D. A., & Maitelli, A. L. (2019). Robust observer-based actuator and sensor fault estimation for discrete-time systems. Journal of Control, Automation and Electrical Systems, 30, 160–169.CrossRefGoogle Scholar
  2. da Silva, J. E., Terra, B., Martins, R., & de Sousa, J. B. (2007). Modeling and simulation of the LAUV autonomous underwater vehicle. In 13th IEEE IFAC international conference on methods and models in automation and robotics.Google Scholar
  3. França, R. P., Salton, A. T., Castro, R. D., Green, B. N., & Marelli, D. (2015). Trajectory generation for bathymetry based AUV navigation and localization. IFAC-PapersOnLine, 48(16), 95–100.CrossRefGoogle Scholar
  4. González, J., Blanco, J. L., Galindo, C., Ortiz-de Galisteo, A., Fernandez-Madrigal, J. A., Moreno, F. A., et al. (2009). Mobile robot localization based on ultra-wide-band ranging: A particle filter approach. Robotics and Autonomous Systems, 57(5), 496–507.CrossRefGoogle Scholar
  5. Gordon, N. J., Salmond, D. J., & Smith, A. F. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F (radar and signal processing), IET, vol. 140, pp. 107–113.Google Scholar
  6. Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1), 97–109.MathSciNetCrossRefGoogle Scholar
  7. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82(1), 35–45.MathSciNetGoogle Scholar
  8. Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, 83(1), 95–108.MathSciNetCrossRefGoogle Scholar
  9. Karlsson, R., Gusfafsson, F., & Karlsson, T. (2003). Particle filtering and Cramer-Rao lower bound for underwater navigation. In Acoustics, speech, and signal processing, 2003. Proceedings.(ICASSP’03). 2003 IEEE international conference on, IEEE, vol. 6, pp. VI-65.Google Scholar
  10. Klein, I., & Diamant, R. (2018). Observability analysis of heading aided INS for a maneuvering AUV. Journal of the Institute of Navigation, 65(1), 73–82.CrossRefGoogle Scholar
  11. Lima, J. M., Guetter, A. K., Freitas, S. R., Panetta, J., & de Mattos, J. G. Z. (2017). A meteorologicalstatistic model for short-term wind power forecasting. Journal of Control, Automation and Electrical Systems, 28(5), 679–691.CrossRefGoogle Scholar
  12. Matiussi Ramalho, G., Carvalho, S. R., Finardi, E. C., & Moreno, U. F. (2018). Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems, 29(3), 318–327.CrossRefGoogle Scholar
  13. Mohammaddadi, G., Pariz, N., & Karimpour, A. (2017). Modal Kalman filter. Asian Journal of Control, 19(2), 728–738.MathSciNetCrossRefGoogle Scholar
  14. Mori, H., & Kikuchi, T. (2017). Performance verification of underwater crawling swimming robot with attitude changing function. Electronics and Communications in Japan, 100(10), 70–81.CrossRefGoogle Scholar
  15. Munafò, A., & Ferri, G. (2017). An acoustic network navigation system. Journal of Field Robotics, 34(7), 1332–1351.CrossRefGoogle Scholar
  16. Nemra, A., & Aouf, N. (2010). Robust INS/GPS sensor fusion for UAV localization using SDRE nonlinear filtering. IEEE Sensors Journal, 10(4), 789–798.CrossRefGoogle Scholar
  17. Neto, W. A., Pinto, M. F., Marcato, A. L. M., da Silva, I. C., & Fernandes, Dd A. (2019). Mobile robot localization based on the novel leader-based bat algorithm. Journal of Control, Automation and Electrical Systems, 30(3), 337–346.CrossRefGoogle Scholar
  18. Rauschenbach, T., Pfützenreuter, T., & Ament, C. (2015). Editorial of the special issue of underwater robotics. Robotics and Autonomous Systems, 67(C), 1–2.CrossRefGoogle Scholar
  19. Scardua, L. A., & da Cruz, J. J. (2016). Particle-based tuning of the unscented kalman filter. Journal of Control, Automation and Electrical Systems, 27, 10–18.CrossRefGoogle Scholar
  20. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge: MIT Press.zbMATHGoogle Scholar
  21. USGS. (2012). Lake Tahoe bathymetry, united states geological survey. http://tahoe.usgs.gov/bath.html. Accessed 03 June 2017.
  22. Wolbrecht, E., Gill, B., Borth, R., Canning, J., Anderson, M., & Edwards, D. (2014). Hybrid baseline localization for autonomous underwater vehicles. Journal of Intelligent & Robotic Systems, pp. 1–19.Google Scholar
  23. Won, S. P., Melek, W. W., & Golnaraghi, F. (2010). A Kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system. IEEE Transactions on Industrial Electronics, 57(5), 1787–1798.CrossRefGoogle Scholar
  24. Wynn, R. B., Huvenne, V. A., Le Bas, T. P., Murton, B. J., Connelly, D. P., Bett, B. J., et al. (2014). Autonomous underwater vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Marine Geology, 352, 451–468.CrossRefGoogle Scholar
  25. Youngberg, J. W. (1992). Method for extending GPS to underwater applications. US Patent 5,119,341.Google Scholar
  26. Zhou, Z., Wu, J., Li, Y., Fu, C., & Fourati, H. (2017). Critical issues on Kalman filter with colored and correlated system noises. Asian Journal of Control, 19(6), 1905–1919.MathSciNetCrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.GEPOC - Center of TechnologyFederal University of Santa MariaSanta MariaBrazil
  2. 2.GACS - School of TechnologyPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  3. 3.DELAEUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations