Advertisement

Transient Stability of Power Systems Under High Penetrations of Wind Power Generation

  • Alexandre P. SohnEmail author
  • Maurício B. de C. Salles
  • Luís F. C. Alberto
Article
  • 100 Downloads

Abstract

This paper investigates the impact of high levels of penetration of wind power generation in the problem of transient stability of power systems. The investigation takes into account the stability issues related to the disconnection of wind power plants due to violation of voltage limits defined by the low-voltage ride-through curve. Different levels of penetration are investigated, starting at 10.59% for wind power plants based on types 1, 2, 3 and 4 wind turbine generators, until 75.24% for those based on type 3. Simulation results show that the secure power system operation can be maintained in most of the situations, from the point of view of transient stability, for the crescent penetration of wind power plants.

Keywords

Low-voltage ride-through Transient stability Wind power generation 

Notes

References

  1. Abad, G., López, J., Rodríguez, M. A., Marroyo, L., & Iwanski, G. (2011). Doubly fed induction machine: Modeling and control for wind energy generation (1st ed.). London: Wiley.  https://doi.org/10.1002/9781118104965.CrossRefGoogle Scholar
  2. Ackermann, T. (Ed.). (2012). Wind power in power systems (2nd ed.). New York: Wiley.  https://doi.org/10.1002/9781119941842.CrossRefGoogle Scholar
  3. Anaya-Lara, O., Hughes, F. M., Jenkins, N., & Strbac, G. (2006). Influence of windfarms on power system dynamic and transient stability. Wind Engineering, 30(2), 107–127.  https://doi.org/10.1260/030952406778055018.CrossRefGoogle Scholar
  4. Canizares, C., Fernandes, T., Geraldi, E, Jr., Gérin-Lajoie, L., Gibbard, M., Hiskens, I., et al. (2015). Benchmark systems for small-signal stability analysis and control. Technical report: IEEE Power and Energy Society.Google Scholar
  5. Edrah, M., Lo, K. L., & Anaya-Lara, O. (2015). Impacts of high penetration of DFIG wind turbines on rotor angle stability of power systems. IEEE Transactions on Sustainable Energy, 6(3), 759–766.  https://doi.org/10.1109/TSTE.2015.2412176.CrossRefGoogle Scholar
  6. Ellis, A., Kazachkov, Y., Muljadi, E., Pourbeik, P., & Sanchez-Gasca, J. J. (2011a). Description and technical specifications for generic WTG models—a status report. In 2011 IEEE/PES power systems conference and exposition (pp. 1–8).  https://doi.org/10.1109/PSCE.2011.5772473.
  7. Ellis, A., Muljadi, E., Sanchez-Gasca, J., & Kazachkov, Y. (2011b). Generic models for simulation of wind power plants in bulk system planning studies. In 2011 IEEE power and energy society general meeting (pp. 1–8).  https://doi.org/10.1109/PES.2011.6039844.
  8. ESIG (2019) Energy systems integration group-generic models (individual turbines). https://www.esig.energy/wiki-main-page/generic-models-individual-turbines/#Structure.
  9. FERC (2005). Interconnection for wind energy (docket no. rm05-4-000-order no. 661). FERC-Federal Energy Regulatory Commission, Washington, DC.Google Scholar
  10. FTI. (2018). Global wind market update-demand and supply 2017. FTI consulting, Technical report .Google Scholar
  11. Gautam, D., Vittal, V., & Harbour, T. (2009). Impact of increased penetration of dfig-based wind turbine generators on transient and small signal stability of power systems. IEEE Transactions on Power Systems, 24(3), 1426–1434.  https://doi.org/10.1109/TPWRS.2009.2021234.CrossRefGoogle Scholar
  12. Howlader, A. M., & Senjyu, T. (2016). A comprehensive review of low voltage ride through capability strategies for the wind energy conversion systems. Renewable and Sustainable Energy Reviews, 56, 643–658.CrossRefGoogle Scholar
  13. IEA. (2016). World energy outlook.Google Scholar
  14. Iov, F., Hansen, A. D., Sørensen, P., & Cutululis, N. A. (2007). Mapping of grid faults and grid codes. Technical report, Risø DTU National Laboratory for Sustainable Energy, Technical University of Denmark, Kongens Lyngby.Google Scholar
  15. Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., et al. (2004). Definition and classification of power system stability ieee/cigre joint task force on stability terms and definitions. IEEE Transactions on Power Systems, 19(3), 1387–1401.  https://doi.org/10.1109/TPWRS.2004.825981.CrossRefGoogle Scholar
  16. Li, H., & Chen, Z. (2008). Overview of different wind generator systems and their comparisons. IET Renewable Power Generation, 2(2), 123–138.  https://doi.org/10.1049/iet-rpg:20070044.CrossRefGoogle Scholar
  17. Mahela, O. P., & Shaik, A. G. (2016). Comprehensive overview of grid interfaced wind energy generation systems. Renewable and Sustainable Energy Reviews, 57, 260–281.  https://doi.org/10.1016/j.rser.2015.12.048.CrossRefGoogle Scholar
  18. Maswood, A. I., & Tafti, H. D. (2019). Advanced multilevel converters and applications in grid integration (1st ed.). New York: Wiley.Google Scholar
  19. Michalke, G. (2008). Variable speed wind turbines-modelling, control, and impact on power systems. Ph.D. thesis, Darmstadt University of Technology, Darmstadt.Google Scholar
  20. Mohseni, M., & Islam, S. M. (2012). Review of international grid codes for wind power integration: Diversity, technology and a case for global standard. Renewable and Sustainable Energy Reviews, 16(6), 3876–3890.  https://doi.org/10.1016/j.rser.2012.03.039.CrossRefGoogle Scholar
  21. Muljadi, E., Butterfield, C. P., Ellis, A., Mechenbier, J., Hochheimer, J., & Young, R., et al. (2006). Equivalencing the collector system of a large wind power plant. In 2006 IEEE power engineering society general meeting (pp. 9).  https://doi.org/10.1109/PES.2006.1708945.
  22. Muljadi, E., Butterfield, C. P., Parsons, B., & Ellis, A. (2007). Effect of variable speed wind turbine generator on stability of a weak grid. IEEE Transactions on Energy Conversion, 22(1), 29–36.  https://doi.org/10.1109/TEC.2006.889602.CrossRefGoogle Scholar
  23. Muljadi, E., Pai, M. A., & Nguyen, T. B. (2009). Transient stability of the grid with a wind power plant. In 2009 IEEE/PES power systems conference and exposition (pp. 1–7).  https://doi.org/10.1109/PSCE.2009.4840030.
  24. Pai, A. (1989). Energy function analysis for power system stability (1st ed.). Berlin: Springer.  https://doi.org/10.1007/978-1-4613-1635-0.CrossRefGoogle Scholar
  25. Samuelsson, O., & Lindahl, S. (2005). On speed stability. IEEE Transactions on Power Systems, 20(2), 1179–1180.  https://doi.org/10.1109/TPWRS.2005.846194.CrossRefGoogle Scholar
  26. Siemens. (2019). \(\text{Pss}^{\textregistered }\text{ e }\) 34.0 online documentationGoogle Scholar
  27. Singh, B., & Singh, S. (2009). Wind power interconnection into the power system: A review of grid code requirements. The Electricity Journal, 22(5), 54–63.  https://doi.org/10.1016/j.tej.2009.04.008.CrossRefGoogle Scholar
  28. Slootweg, J., & Kling, W. (2003). The impact of large scale wind power generation on power system oscillations. Electric Power Systems Research, 67(1), 9–20.  https://doi.org/10.1016/S0378-7796(03)00089-0.CrossRefGoogle Scholar
  29. Vittal, E., O’Malley, M., & Keane, A. (2012). Rotor angle stability with high penetrations of wind generation. IEEE Transactions on Power Systems, 27(1), 353–362.  https://doi.org/10.1109/TPWRS.2011.2161097.CrossRefGoogle Scholar
  30. Vittal, V., & Ayyanar, R. (2013). Grid integration and dynamic impact of wind energy (1st ed.). Berlin: Springer.  https://doi.org/10.1007/978-1-4419-9323-6.CrossRefGoogle Scholar
  31. Yaramasu, V., & Wu, B. (2017). Model predictive control of wind energy conversion systems (1st ed.). Piscataway: IEEE Press.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of São PauloSão CarlosBrazil
  2. 2.Department of Energy and Automation EngineeringUniversity of São PauloSão PauloBrazil

Personalised recommendations