Multi-robot Coordination for Energy-Efficient Exploration

  • Abdenour BenkridEmail author
  • Abdelaziz Benallegue
  • Noura Achour


This paper investigates the problem of multi-robot exploration in unknown environment situations. In order to build a coherent representation of the environment, a decentralized coordination approach is proposed to minimize the exploration time while considering the total motion energy saving of the mobile robots. The exploration target is defined as a segment of the environment including the frontiers between the unknown and the explored areas. Each robot evaluates its relative rank among the other robots of the team regarding energy consumption to reach this exploration target. As a result, the robot is assigned to the segment for which it has the lowest rank. An implementation on real robots and tests in simulation as well as a comparison with some existing approaches have been performed. The obtained results demonstrate the validity and the efficiency of the proposed method.


Autonomous exploration Multi-robot coordination Multi-robot task allocation Distributed robot systems Mobile robot teams 



  1. Altshuler, Y., Pentland, A., & Bruckstein, A. M. (2018). Cooperative “swarm cleaning” of stationary domains (pp. 15–49). Cham: Springer. Scholar
  2. Amigoni, F., Banfi, J., & Basilico, N. (2017). Multirobot exploration of communication-restricted environments: A survey. IEEE Intelligent Systems, 32(6), 48–57. Scholar
  3. Amigoni, F., Banfi, J., Basilico, N., Rekleitis, I., & Quattrini Li, A. (2019). Online update of communication maps for exploring multirobot systems under connectivity constraints. In N. Correll, M. Schwager, & M. Otte (Eds.), Distributed Autonomous Robotic Systems (pp. 513–526). Cham: Springer.CrossRefGoogle Scholar
  4. Bautin, A., Simonin, O., & Charpillet, F. (2012). Minpos: A novel frontier allocation algorithm for multi-robot exploration. In: Su, C. Y., Rakheja, S., Liu, H. (eds) 5th International Conference on Intelligent Robotics and Applications-ICIRA (Vol. 7507, pp. 496–508). Montréal: Springer,, the original publication is available at
  5. Beeson, P., Jong, N. K., & Kuipers, B. (2005). Towards autonomous topological place detection using the extended voronoi graph. In Proceedings of the IEEE international conference on robotics and automation-ICRA (pp. 4373–4379).
  6. Benkrid, A., Benallegue, A., & Achour, N. (2016). Robot’s energy consumption based multi-robot exploration strategy. In Proceedings of the IEEE international conference on robotics and biomimetics (ROBIO), Qingdao, China (pp. 1129–1134).Google Scholar
  7. Burgard, W., Moors, M., Stachniss, C., & Schneider, F. E. (2005). Coordinated multi-robot exploration. IEEE Transactions on Robotics, 21(3), 376–386. Scholar
  8. Calisi, D., Iocchi, L., Nardi, D., Randelli, G., & Ziparo, V. A. (2009). Improving search and rescue using contextual information. Advanced Robotics, 23(9), 1199–1216. Scholar
  9. Corke, P. (2011). Robotics, vision and control: Fundamental algorithms in Matlab, Springer tracts in advanced robotics, vol 73. Berlin: Springer., mention sur la p. de titre: With 393 images, Additional material is provided at
  10. Dissanayake, M. W. M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A solution to the simultaneous localization and map building (slam) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241. Scholar
  11. Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 34–46. Scholar
  12. Hawley, J., & Butler, Z. (2013). Hierarchical distributed task allocation for multi-robot exploration (pp. 445–458). Berlin: Springer. Scholar
  13. Kamarudin, K., Mamduh, S. M., Shakaff, A. Y. M., Saad, S. M., Zakaria, A., Abdullah, A. H., & Kamarudin, L. M. (2013). Method to convert kinect’s 3d depth data to a 2d map for indoor slam. In 2013 IEEE 9th international colloquium on signal processing and its applications (pp. 247–251).
  14. Li, A. Q., Cipolleschi, R., Giusto, M., & Amigoni, F. (2016). A semantically-informed multirobot system for exploration of relevant areas in search and rescue settings. Autonomous Robots, 40(4), 581–597. Scholar
  15. Mei, Y., Lu, Y. H., Lee, C. S. G., & Hu, Y. C. (2006). Energy-efficient mobile robot exploration. In Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006 (pp. 505–511).
  16. Nestmeyer, T., Giordano, P. R., Bülthoff, H. H., & Franchi, A. (2017). Decentralized simultaneous multi-target exploration using a connected network of multiple robots. Autonomous Robots, 41(4), 989–1011.CrossRefGoogle Scholar
  17. Otte, M. (2018). An emergent group mind across a swarm of robots: Collective cognition and distributed sensing via a shared wireless neural network. The International Journal of Robotics Research, 37(9), 1017–1061. Scholar
  18. Otte, M., Kuhlman, M. J., & Sofge, D. (2019). Auctions for multi-robot task allocation in communication limited environments. Autonomous Robots,. Scholar
  19. Puig, D., Garcia, M., & Wu, L. (2011). A new global optimization strategy for coordinated multi-robot exploration: Development and comparative evaluation. Robotics and Autonomous Systems, 59(9), 635–653. Scholar
  20. Ropero, F., Muñoz, P., & R-Moreno, M. D. (2019). Terra: A path planning algorithm for cooperative ugv-uav exploration. Engineering Applications of Artificial Intelligence, 78, 260–272. Scholar
  21. Smith, A. J., & Hollinger, G. A. (2018). Distributed inference-based multi-robot exploration. Autonomous Robots, 42(8), 1651–1668. Scholar
  22. Stachniss, C., Grisetti, G., & Burgard, W. (2005). Information gain-based exploration using rao-blackwellized particle filters. In Proceedings of robotics: science and systems (RSS), Cambridge, MA, USA, (pp. 65–72).Google Scholar
  23. Strom, D. P., Nenci, F., & Stachniss, C. (2015). Predictive exploration considering previously mapped environments. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 2761–2766).Google Scholar
  24. Wurm, K. M., Dornhege, C., Eyerich, P., Stachniss, C., Nebel, B., & Burgard, W. (2010). Coordinated exploration with marsupial teams of robots using temporal symbolic planning. In 2010 IEEE/RSJ international conference on intelligent robots and systems (pp. 5014–5019).
  25. Wurm, K. M., Dornhege, C., Nebel, B., Burgard, W., & Stachniss, C. (2013). Coordinating heterogeneous teams of robots using temporal symbolic planning. Autonomous Robots, 34(4), 277–294. Scholar
  26. Wurm, K. M., Stachniss, C., & Burgard, W. (2008). Coordinated multi-robot exploration using a segmentation of the environment. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1160–1165).
  27. Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In Proceedings of the second international conference on autonomous agents. AGENTS ’98 (pp. 47–53). New York: ACM.
  28. Yan, Y., & Mostofi, Y. (2013). Communication and path planning strategies of a robotic coverage operation. In 2013 American control conference (pp. 860–866).
  29. Zlot, R., Stentz, A., Dias, M. B., & Thayer, S. (2002). Multi-robot exploration controlled by a market economy. In IEEE international conference on robotics and automation, 2002. proceedings. ICRA ’02 (Vol. 3, pp. 3016–3023).

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.LRPE LaboratoryUSTHB UniversityAlgiersAlgeria
  2. 2.Versailles Engineering Systems Laboratory - LISVVelizyFrance

Personalised recommendations