Regional Enlarged Controllability of Semilinear Systems with Constraints on the Gradient: Approaches and Simulations

  • T. KariteEmail author
  • A. Boutoulout
  • F. Z. El Alaoui


The aim of this paper is to study the constrained gradient controllability problem governed by parabolic evolution equations. The purpose is to find and compute the control u that steers the gradient state from an initial gradient one \(\nabla y_{_{0}}\) to a gradient vector supposed to be unknown between two defined levels \(\alpha (\cdot )\) and \(\beta (\cdot )\), only on a subregion \(\omega \) of the system evolution domain \(\varOmega \). The obtained results have been proved via two approaches: The first one is based on sub-differential techniques, while the second one is based on Lagrangian multipliers. An algorithm is given on the basis of Uzawa algorithm, and numerical results are established.


Distributed systems Parabolic systems Regional controllability Gradient Sub-differential Lagrangian multiplier Semilinear systems Minimum energy Uzawa algorithm 

Mathematics Subject Classification

35K58 93B05 93C20 



The present work was supported by Hassan II Academy of Sciences and Technology in Morocco.


  1. Aronsson, G. (1973). Global controllability and bang-bang steering of certain nonlinear systems. SIAM Journal on Control, 11(4), 607–619.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Aubin, J. P. (1984). L’analyse non linéaire et ses motivations économiques. Paris: Masson.zbMATHGoogle Scholar
  3. Barbu, V. (1982). Boundary control problems with nonlinear state equation. SIAM Journal on Control and Optimization, 20(1), 125–143.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Barbu, V. (1984). Optimal control of variational inequalities. London: Pitman.zbMATHGoogle Scholar
  5. Barbu, V., & Wang, G. (2000). State constrained optimal control problems governed by semilinear equations. Numerical Functional Analysis and Optimization, 21(3–4), 411–424.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bergounioux, M. (1993). Augmented Lagrangian method for distributed optimal control problems with state constraints. Journal of Optimization Theory and Applications, 78(3), 493–521.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Bergounioux, M. (1994). Optimal control of parabolic problems with state constraints: A penalization method for optimality conditions. Applied Mathematics and Optimization, 29(3), 285–307.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Brézis, H. (1983). Analyse fonctionnelle : Théorie et applications. Paris: Masson.zbMATHGoogle Scholar
  9. Brezzi, F., & Fortin, M. (1991). Mixed and hybrid finite element methods. New York: Springer.CrossRefzbMATHGoogle Scholar
  10. Chen, S., & Lasiecka, I. (1992). Feedback exact null controllability for unbounded control problems in Hilbert space. Journal of Optimization Theory and Applications, 74(2), 191–219.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Ciarlet, P. G. (1989). Introduction to numerical linear algebra and optimisation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Ciurcea, R., & Matei, A. (2009). Solvability of a mixed variational problem. Annals of the University of Craiova-Mathematics and Computer Science Series, 36(1), 105–111.MathSciNetzbMATHGoogle Scholar
  13. Cortés, J., Van Der Schaft, A., & Crouch, P. E. (2005). Characterization of gradient control systems. SIAM Journal on Control and Optimization, 44(4), 1192–1214.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Cuniasse-Langhans, L. (1998). Evaluation par méthode inverse de la distribution des transferts de chaleur pariétaux le long d’une plaque verticale en convection naturelle. Ph.D. thesis, LETHEM INSA, Toulouse.Google Scholar
  15. Do, V. N. (1990). Controllability of semilinear systems. Journal of Optimization Theory and Applications, 65(1), 41–52.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Ekeland, I., & Temam, R. (1976). Convex analysis and variational problems. Studies in mathematics and its applications; 1. Amsterdam: North-Holland.zbMATHGoogle Scholar
  17. El Jai, A., & El Yacoubi, S. (1993). On the number of actuators in distributed systems. Journal of Applied Mathematics and Computer Science, 3(4), 673–686.zbMATHGoogle Scholar
  18. El Jai, A., & Pritchard, A. J. (1988). Sensors and actuators in distributed systems analysis. New York: Wiley.zbMATHGoogle Scholar
  19. El Jai, A., Pritchard, A. J., Simon, M. C., & Zerrik, E. (1995). Regional controllability of distributed systems. International Journal of Control, 62, 1351–1365.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Engel, K. J., & Nagel, R. (2000). One-parameter semigroups for linear evolution equations. New York: Springer.zbMATHGoogle Scholar
  21. Engel, K. J., & Nagel, R. (2006). A short course on operator semigroups. New York: Springer.zbMATHGoogle Scholar
  22. Fortin, M., & Glowinski, R. (1983). Augmented Lagrangian methods: Applications to the numerical solution of boundary-value problems (Vol. 15). Amsterdam: North-Holland.zbMATHGoogle Scholar
  23. Ge, F., Chen, Y., & Kou, C. (2015). Cyber-physical systems as general distributed parameter systems: Three types of fractional order models and emerging research opportunities. IEEE/CAA Journal of Automatica Sinica Template, 2(4), 353–357.MathSciNetCrossRefGoogle Scholar
  24. Henry, D. (1981). Geometric theory of semilinear parabolic equations. New York: Springer.CrossRefzbMATHGoogle Scholar
  25. Karite, T., & Boutoulout, A. (2017). Regional enlarged controllability for parabolic semilinear systems. International Journal of Applied and Pure Mathematics, 113(1), 113–129.CrossRefGoogle Scholar
  26. Karite, T., & Boutoulout, A. (2018). Regional boundary controllability of semilinear parabolic systems with state constraints. International Journal of Dynamical Systems and Differential Equations, 8(1/2), 150–159.MathSciNetCrossRefGoogle Scholar
  27. Karite, T., Boutoulout, A., & El Alaoui, F. Z. (2018). Some numerical results of regional boundary controllability with output constraints. In C. Klingenberg & M. Westdickenberg (Eds.), Theory, numerics and applications of hyperbolic problems II, Springer proceedings in mathematics & statistics (Vol. 237). Berlin: Springer.Google Scholar
  28. Karite, T., Boutoulout, A., & Torres, D. F. M. (2018). Enlarged controllability of Riemann–Liouville fractional differential equations. Journal of Computational and Nonlinear Dynamics, 13, 090907. Scholar
  29. Kessell, S. R. (1979). Gradient modeling: Resource and fire management. New York: Springer.CrossRefGoogle Scholar
  30. Kostin, V. A., Kostin, A. V., & Kostin, D. V. (2013). Maslov heaviside operator method and \(C_{_{0}}\)-operator duhamel integral. Doklady Mathematics, 88(2), 552–555.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Li, X., & Yong, J. (1995). Optimal control theory for infinite dimensional systems. Boston: Birkhäuser.CrossRefGoogle Scholar
  32. Lions, J. L. (1988a). Contrôlabilité exacte: Perturbations et stabilisation de systémes distribués, Tome 1. Paris: Masson.zbMATHGoogle Scholar
  33. Lions, J. L. (1988b). Exact controllability, stabilization and perturbations for distributed systems. SIAM Review, 30(1), 1–68.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Lions, J. L. (1989). Sur la contrôlabilité exacte élargie. In F. Colombibi, et al. (Eds.), Partial differential equations and the calculus of variations. Progress in nonlinear differential equations and their applications (Vol. 1, pp. 703–727). Berlin: Springer.Google Scholar
  35. Mordukhovich, B. (2007). Optimization and feedback design of state-constrained parabolic systems. Mathematics Research Reports, Paper 52.
  36. Mordukhovich, B. (2011). Optimal control and feedback design of state-constrained parabolic systems in uncertainty conditions. Applicable Analysis, 90(6), 1075–1109.MathSciNetCrossRefzbMATHGoogle Scholar
  37. Pachpatte, B. G. (1973). A note on Gronwall–Bellman inequality. Journal of Mathematical Analysis and Applications, 44, 758–762.MathSciNetCrossRefzbMATHGoogle Scholar
  38. Pavel, N. (1987). Nonlinear evolution operators and semigroups: Applications to partial differential equations. Lecture Notes in Math (Vol. 1260). Berlin: Springer.Google Scholar
  39. Pazy, A. (1990). Semigroups of linear operators and applications to partial differential equations. New York: Springer.zbMATHGoogle Scholar
  40. Rockafellar, R. T. (1993). Lagrange multipliers and optimality. SIAM Review, 35(2), 183–238.MathSciNetCrossRefzbMATHGoogle Scholar
  41. Sparrow, E. M. (1963). On the calculation of radiant interchange between surfaces. In W. Ibele (Ed.), Modern developments in heat transfer (pp. 181–212). New-York: Academic Press.Google Scholar
  42. Wang, G. (2000). Optimal control of parabolic differential equations with two point boundary state constraints. SIAM Journal on Control and Optimization, 38(5), 1639–1654.MathSciNetCrossRefzbMATHGoogle Scholar
  43. Yosida, K. (1980). Functional analysis. Berlin: Springer.zbMATHGoogle Scholar
  44. Zeidler, E. (1995). Applied functional analysis: Applications to mathematical physics. New York: Springer.zbMATHGoogle Scholar
  45. Zerrik, E., El Jai, A., & Boutoulout, A. (2000). Actuators and regional boundary controllability of parabolic system. International Journal of Systems Science, 31(1), 73–82.CrossRefzbMATHGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.TSI Team, MACS Laboratory, Department of Mathematics and Computer Science, Institute of SciencesMoulay Ismail UniversityMeknesMorocco

Personalised recommendations