A Contribution to the Study of Grounding Systems Based on Circuit Synthesis

  • Claudiner Mendes de Seixas
  • Sérgio Kurokawa


This work presents an unprecedented technique capable of representing grounding grids directly in the time domain using an association of passive and discrete circuit elements (RLC circuits: resistors, inductors and capacitors). It is based on the frequency response of RLC circuits and ensures that all elements will be positive (physically implementable), solving situations that other techniques, such as vector fitting, generally presented in the literature are not able to solve using only passive circuits (feasible). The proposed technique is applied from the harmonic impedance previously provided, and therefore this impedance can be obtained using any model. It is accurate; it presents excellent results and was validated by comparing the harmonic admittance and transient voltage curves to those obtained with the hybrid electromagnetic model. The advantage of this technique is that it allows that several components in power systems, such as grounding systems and transmission towers, to be represented by a feasible circuit. Once this circuit is implemented in the laboratory, analysis and comparisons with conventional software (e.g. ATP) can be made and accurate transient electromagnetic responses can be obtained.


Electromagnetic transients Grounding systems Frequency response Impedance Lightning stroke Time domain 



The authors would like to thank the Federal Institute of São Paulo (IFSP) and the São Paulo State University (UNESP-FEIS) for the facilities offered during the development of this paper.


  1. Alípio, R., & Visacro, S. (2017). Time-domain analysis of frequency-dependent electrical parameters of soil. IEEE Transactions on Electromagnetic Compatibility, 59(3), 873–878.CrossRefGoogle Scholar
  2. Almeida, C. F. M., & Kagan, N. (2013). Using evolutionary algorithms to determine frequency-dependent network equivalents. Journal of Control, Automation and Electrical Systems, 24(6), 741–752.CrossRefGoogle Scholar
  3. Araneo, R., Maccioni, M., Lauria, S., Geri, A., Gatta, F., & Celozzi, S. (2015). Hybrid and pi-circuit approaches for grounding system lightning response. In IEEE Eindhoven Powertech, Eindhoven, Netherlands (pp 1–6).Google Scholar
  4. Bewley, L. V. (1934). Theory and tests of the counterpoise. Electrical Engineering. Scholar
  5. Celli, G., Ghiani, E., & Pilo, F. (2012). Behaviour of grounding systems: A quasi-static EMTP model and its validation. Electric Power Systems Research, 85, 24–29.CrossRefGoogle Scholar
  6. Choi, J. H., Lee, B. H., & Paek, S. K. (2012). Frequency-dependent grounding impedance of the counterpoise based on the dispersed currents. Journal of Electrical Engineering & Technology, 7(4), 589–595.CrossRefGoogle Scholar
  7. Conti, A. & Visacro, S. (2007). A simplified model to represent typical grounding configurations applied in medium-voltage and low voltage distribution lines. In IX international symposium on lightning protection, Foz do Iguaçu, Brazil (pp 1–6).Google Scholar
  8. Daszczyński, T. & Zdanowski, M. (2013). Vector fitting implementation for use of modeling of reduced self-capacitance inductor. Przegląd Elektrotechniczny. Accessed 12 January 2018.
  9. Dwight, H. B. (1936). Calculation of the resistances to ground. Electrical Engineering, New York, 55(12), 1319–1328.CrossRefGoogle Scholar
  10. Gazzana, D. S., Dias, G. A. D., Leborgne, R. C., Bretas, A. S., Telló, M., Thomas, D. W. P., et al. (2016). Novel formulation to determine the potential on the soil surface generated by a lightning surge. IEEE Transactions on Magnetics, 52(3), 1.CrossRefGoogle Scholar
  11. Gazzana, D. S., Tronchoni, A. B., Leborgne, R. C., Bretas, A. S., Thomas, D. W. P., & Christopoulos, C. (2017). An improved soil ionization representation to numerical simulation of impulsive grounding systems. IEEE Transactions on Magnetics, 54(3), 1.CrossRefGoogle Scholar
  12. Grcev, L. D., & Dawalibi, F. (1990). An electromagnetic model for transients in grounding systems. IEEE Transactions on Power Delivery, 5(4), 1773–1781.CrossRefGoogle Scholar
  13. Grcev, L. D., & Heimbach, M. (1997). Frequency dependent and transient characteristics of substation grounding system. IEEE Transactions on Power Delivery, 12(1), 172–178.CrossRefGoogle Scholar
  14. Gupta, B. R., & Thapar, B. (1980). Impulse impedance of grounding grids. IEEE Transactions on Power Apparatus and Systems, 99(6), 2357–2362.CrossRefGoogle Scholar
  15. Gustavsen, B. (2002). Computer code for rational approximation of frequency dependent admittance matrices. IEEE Transactions on Power Delivery, 17(4), 1093–1098.CrossRefGoogle Scholar
  16. Harrat, B., Nekhoul, B., Kerroum, K., & Drissi, K. E. K. (2011). A simplified approach to modeling the interaction between grounding grid and lightning stroke. Annals of Telecommunications, 66(11–12), 603–615.CrossRefGoogle Scholar
  17. Igarashi, A. Y. S., Leandro, G. V., Oliveira, G. H. C., & Leite, E. A. (2014). Genetic algorithms optimized fuzzy logic control to support the generation of lightning warnings. Journal of Control, Automation and Electrical Systems, 25(1), 32–45.CrossRefGoogle Scholar
  18. Lima, A. C. S. (2015). Rational modeling of nonhomogeneous systems. Journal of Control, Automation and Electrical Systems, 26(2), 180–189.CrossRefGoogle Scholar
  19. Liu, K., Wang, C., & She, H. (2016). Estimation of critical electric field intensity of soil ionization base on the ohm’s law. In Asia-pacific international symposium on electromagnetic compatibilityAPEMC, Shenzhen, China (pp. 53–55).Google Scholar
  20. Liu, Y., Zitnik, M., & Thottappillil, R. (2001). An improved transmission line model of grounding system. IEEE Transactions on Electromagnetic Compatibility, 43(3), 348–355.CrossRefGoogle Scholar
  21. Mashayekhi, V., Sadeghi, S. H. H., Moini, R., & Sheshyekani, K. (2017). An adaptive chebyshev approach for fast computation of grounding system admittance matrix. IEEE Transactions on Electromagnetic Compatibility, 59(2), 420–428.CrossRefGoogle Scholar
  22. Mokhtari, M., Abdul-Malek, Z., & Salam, Z. (2015). An improved circuit-based model of a grounding electrode by considering the current rate of rise and soil ionization factors. IEEE Transactions on Power Delivery, 30(1), 211–219.CrossRefGoogle Scholar
  23. Otero, A. F., Cidras, J., & Del Alamo, J. L. (1999). Frequency dependent grounding system calculation by means of a conventional nodal analysis technique. IEEE Transactions on Power Delivery, 14(3), 873–878.CrossRefGoogle Scholar
  24. Rizk, M. E. M., Mahmood, F., Lehtonen, M., Badran, E. A., & Abdel-Rahman, M. H. (2016). Investigation of lightning electromagnetic fields on underground cables in wind farms. IEEE Transactions on Electromagnetic Compatibility, 58(1), 143–152.CrossRefGoogle Scholar
  25. Rodrigues, A. R., Guimarães, G. C., Boaventura, W. C., Lima, J. L. C., Chaves, M. L. R., & Silva, A. M. B. (2017). Volt-time curve prediction of distribution insulators under standard and typical lightning overvoltages using the disruptive effect method. Journal of Control, Automation and Electrical Systems, 28(2), 259–270.CrossRefGoogle Scholar
  26. Sayidmarie, K. H. & Yahya, L. S. (2014). Modeling of dual-band crescent-shape monopole antenna for WLAM applications. International Journal of Electromagnetics and Applications. Accessed 12 January 2018.
  27. Sheshyekania, K., Sadeghib, S. H. H., Moinib, R., & Rachidi, F. (2011). Frequency-domain analysis of ground electrodes buried in an ionized soil when subjected to surge currents: A MoM–AOM approach. Electric Power Systems Research, 81(2), 290–296.CrossRefGoogle Scholar
  28. Sunde, E. D. (1949). Earth conduction effects in transmission systems. New York: Van Nostrand.Google Scholar
  29. Taheri, F. & Ostadzadeh, S. R. (2014). Transient analysis of the single-conductor overhead lines connected to grid-grounded arrester under direct lightning by means of GA. Journal of Communication Engineering. Accessed 12 January 2018.
  30. Toseva, V. A., Drissi, K. E. K., Faure; C., Pasquier, C., & Kerroum, K. (2012). TM plane wave coupling to wire conductors above homogeneous soil: comparison between complex image and transmission line approach. In International conference on software, telecommunications and computer networks-SoftCOM, 20, Split, Croatia (pp. 1–5).Google Scholar
  31. Visacro, S., & Soares Júnior, A. (2005). HEM: A model for simulation of lightning-related engineering problems. IEEE Transactions on Power Delivery, 20(2), 1206–1208.CrossRefGoogle Scholar
  32. Wu, J., Zhang, B., He, J., et al. (2015). A comprehensive approach for transient performance of grounding system in the time domain. IEEE Transactions on Electromagnetic Compatibility, 57(2), 250–256.CrossRefGoogle Scholar
  33. Yang, G., Yu, Z., Zhang, Y., Chen, S., Zhang, B., & He, J. (2017). Evaluation of lightning current and return stroke velocity using measured far electric field above a horizontally stratified ground. IEEE Transactions on Electromagnetic Compatibility. Accessed 12 January 2018.
  34. Zeng, R., Gong, X., He, J., Zhang, B., & Gao, Y. (2008). Lightning impulse performances of grounding grids for substations considering soil ionization. IEEE Transactions on Power Delivery, 23(2), 667–675.CrossRefGoogle Scholar
  35. Zhang, B., Wu, J., He, J., & Zeng, R. (2013). Analysis of transient performance of grounding system considering soil ionization by time domain method. IEEE Transactions on Magnetics, 49(5), 1837–1840.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2018

Authors and Affiliations

  • Claudiner Mendes de Seixas
    • 1
  • Sérgio Kurokawa
    • 2
  1. 1.Campus VotuporangaFederal Institute of São Paulo - IFSPVotuporangaBrazil
  2. 2.Electrical Engineering DepartmentSão Paulo State University - UNESPIlha SolteiraBrazil

Personalised recommendations