Advertisement

Humanoid Robot Framework for Research on Cognitive Robotics

  • Danilo H. Perico
  • Thiago P. D. Homem
  • Aislan C. Almeida
  • Isaac J. Silva
  • Claudio O. VilãoJr.
  • Vinicius N. Ferreira
  • Reinaldo A. C. Bianchi
Article
  • 79 Downloads

Abstract

This paper presents a humanoid robot framework, composed of a simulator and a telemetry interface. The framework is based on the Cross Architecture, and it is developed aiming for the RoboCup Soccer Humanoid League domain. A simulator is an important tool for testing cognitive algorithms without handling issues of real robots; furthermore, a simulator is extremely useful for allowing reproducibility of any developed algorithm, even if there is no robot available. The proposed simulator allows an easy transfer of the algorithms developed in the simulator to real robots, as long as it uses the Cross Architecture as its software architecture. Then, in order to evaluate the cognitive algorithms in real robots, a telemetry interface is proposed. From this interface, it is possible to monitor any variable in the robot’s shared memory. The framework is open source and has low computational cost. Experiments were conducted in order to analyze both, simulator and telemetry interface. Experiments performed with the simulator aim to validate the high-level strategy development and the portability to a real robot, while experiments with telemetry interface aim to evaluate the robot behavior using, as input, the information received from the shared memory passed by all processes. The results show that the simulator can be used to test and develop new algorithms, while the telemetry can be used to monitor the robot, thus validating the framework for this domain.

Keywords

Humanoid robot framework Cognitive robotics Robot simulator and telemetry 

Notes

Acknowledgements

The authors would like to thank CAPES, CNPq and FAPESP (grants 2016/21047-3 and 2016/18792-9) for their financial support.

References

  1. Allgeuer, P., Schwarz, M., Pastrana, J., Schueller, S., Missura, M., & Behnke, S. (2013). A ROS-based software framework for the NimbRo-OP humanoid open platform. In Proceedings of the 8th workshop on humanoid soccer robot. IEEE-RAS, Atlanta.Google Scholar
  2. Arkin, R. C. (1998). Behavior-based robotics. Cambridge: MIT Press.Google Scholar
  3. Barrett, S., Genter, K., He, Y., Hester, T., Khandelwal, P., Menashe, J., et al. (2013). UT Austin Villa 2012: Standard Platform League World Champions. In RoboCup, China.Google Scholar
  4. Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 14–23.CrossRefGoogle Scholar
  5. Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo localization for mobile robots. In 1999 IEEE international conference on robotics and automation. Proceedings (Vol. 2, pp. 1322–1328). IEEE.Google Scholar
  6. Fox, D., Burgard, W., Dellaert, F., & Thrun, S. (1999). Monte carlo localization: Efficient position estimation for mobile robots. AAAI/IAAI, 343–349, 1999.zbMATHGoogle Scholar
  7. Gazebo. (2016). http://gazebosim.org. Accessed May 19, 2016.
  8. Ha, I., Tamura, Y., Asama, H., Han, J., & Hong, D. W. (2011). Development of open humanoid platform DARwIn-OP. In SICE annual conference 2011 (pp. 2178–2181).Google Scholar
  9. Hayes-Roth, B. (1985). A blackboard architecture for control. Artificial Intelligence, 26(3), 251–321.CrossRefGoogle Scholar
  10. Homem, T. P. D., Perico, D. H., Santos, P. E., Bianchi, R. A. C., & de Mantaras, R. L. (2017). Retrieving and reusing qualitative cases: An application in humanoid-robot soccer. AI Communications, 30(3–4), 251–265.MathSciNetCrossRefGoogle Scholar
  11. Ingrand, F. F., Chatila, R., Alami, R., & Robert, F. (1996). PRS: A high level supervision and control language for autonomous mobile robots. In 1996 IEEE international conference on robotics and automation. Proceedings (Vol. 1, pp. 43–49). IEEE.Google Scholar
  12. Perico, D. H., Bianchi, R. A. C., Santos, P. E., & Lopez de Mántaras, R. (2016). Collaborative communication of qualitative spatial perceptions for multi-robot systems. In Proceedings of 29th international workshop on qualitative reasoning (IJCAI), New York.Google Scholar
  13. Perico, D. H., Homem, T. P. D., Almeida, A. C., Silva, I. J., Vilão, C. O., Ferreira, V. N., & Bianchi, R. A. C. (2016). A robot simulator based on the cross architecture for the development of cognitive robotics. In 2016 XIII Latin American robotics symposium and IV Brazilian robotics symposium (LARS/SBR) (pp. 317–322).Google Scholar
  14. Perico, D. H., Silva, I. J., Vilão Jr., C. O., Homem, T. P. D., Destro, R. C., & Tonidandel, F. (2014a). Joint conference on robotics, LARS 2014, SBR 2014, robocontrol 2014. Revised selected papers, chapter Newton: A high level control humanoid robot for the RoboCup Soccer KidSize League. Berlin: Springer.Google Scholar
  15. Perico, D. H., Silva, I. J., Vilão, C. O., Homem, T. P. D., Destro, R. C., Tonidandel, F., et al. (2014b). Hardware and software aspects of the design and assembly of a new humanoid robot for robocup soccer. In Robotics: SBR-LARS robotics symposium and robocontrol (SBR LARS Robocontrol).Google Scholar
  16. Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). ROS: An open-source robot operating system. In ICRA workshop on open source software.Google Scholar
  17. RoboCup Humanoid League. (2016/2017). RoboCup Soccer Humanoid League Laws of the Game. https://www.robocuphumanoid.org/materials/rules/. Accessed Nov 20, 2017.
  18. Robocup Soccer simulation. (2017). http://wiki.robocup.org/Soccer_Simulation_League. Accessed Nov 20, 2017.
  19. Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach. Englewood Cliffs: Prentice Hall Press.zbMATHGoogle Scholar
  20. Silva, I. J., Perico, D. H., Homem, T. P. D., Vilão, C. O., Tonidandel, F., & Bianchi, R. A. C. (2015). Using reinforcement learning to improve the stability of a humanoid robot: Walking on sloped terrain. In 12th Latin American robotics symposium and 2015 3rd Brazilian symposium on robotics (LARS-SBR).Google Scholar
  21. Vilão, C. O., Perico, D. H., Silva, I. J., Homem, T. P. D., Tonidandel, F., & Bianchi, R. A. C. (2014). A single camera vision system for a humanoid robot. In SBR-LARS robotics symposium and robocontrol.Google Scholar
  22. Virtual robot experimentation platform. (2016). http://www.v-rep.eu/. Accessed May 19, 2016.
  23. Webots. (2016). http://www.cyberbotics.com/. Accessed May 19, 2016.

Copyright information

© Brazilian Society for Automatics--SBA 2018

Authors and Affiliations

  1. 1.Centro Universitário FEISão Bernardo do CampoBrazil
  2. 2.Instituto Federal de São PauloSão PauloBrazil

Personalised recommendations