Trajectory Optimization Using Sequential Convex Programming with Collision Avoidance

  • Guilherme Matiussi Ramalho
  • Sidney Roberto Carvalho
  • Erlon Cristian Finardi
  • Ubirajara Franco Moreno
Article
  • 40 Downloads

Abstract

In multi-robot systems, it is commonly used collaborative approaches to solve complex tasks faster and efficiently. In most of those approaches, the decisions are made centralized or require global information about the objective or the robots, limiting many real implementations. The present work is based on a decentralized solution for the Rendezvous problem, by using only local information about the robots and asymmetrical information about the meeting point. As the primary contribution, we propose a sequential convex programming approach to overcome the non-convexities when physical spaces are taken into account in the optimization problem, which provides the robots with the collision avoidance capability during their movement to the target point. Experiments are also performed to show the effectiveness of the proposed approach.

Keywords

Consensus theory Model predictive control Nonlinear programming Sequential convex programming Multi-robot systems 

Notes

Acknowledgements

Financial support from Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) is gratefully acknowledged.

Supplementary material

40313_2018_377_MOESM1_ESM.avi (7.1 mb)
Supplementary material 1 (avi 7260 KB)
40313_2018_377_MOESM2_ESM.avi (8.6 mb)
Supplementary material 2 (avi 8852 KB)
40313_2018_377_MOESM3_ESM.avi (5.5 mb)
Supplementary material 3 (avi 5587 KB)
40313_2018_377_MOESM4_ESM.avi (44.3 mb)
Supplementary material 4 (avi 45364 KB)
40313_2018_377_MOESM5_ESM.mp4 (34.9 mb)
Supplementary material 5 (mp4 35694 KB)

References

  1. Benzerrouk, A., Adouane, L., & Martinet, P. (2013). Obstacle avoidance controller generating attainable set-points for the navigation of multi-robot system. In IEEE intelligent vehicles symposium (IV), 2013, Gold Coast, QLD, Australia (pp. 487–492).Google Scholar
  2. Camponogara, E., Jia, D., Krogh, B. H., & Talukdar, S. (2002). Distributed model predictive control. IEEE Control Systems, 22, 44–52.CrossRefGoogle Scholar
  3. Cortés, J., Martínez, S., & Bullo, F. (2006). Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Control, 51(8), 1289–1298.MathSciNetCrossRefMATHGoogle Scholar
  4. Dimarogonas, D. V., & Kyriakopoulos, K. J. (2007). On the rendezvous problem for multiple nonholonomic agents. IEEE Transactions on Automatic Control, 52(5), 916–922.MathSciNetCrossRefMATHGoogle Scholar
  5. Grant, M., Boyd, S., & Ye, Y. (2006). Disciplined convex programming, volume 84 of nonconvex optimization and its applications (pp. 155–210). New York: Springer.MATHGoogle Scholar
  6. Kan, Z., Klotz, J., Cheng, T., & Dixon, W. E. (2012). Ensuring network connectivity for nonholonomic robots during decentralized rendezvous. In American control conference (pp. 3718–3723). Montreal, QC: IEEE.Google Scholar
  7. Kan, Z., Klotz, J. R., Shea, J. M., Doucette, E. A., & Dixon, W. E. (2016). Decentralized rendezvous of nonholonomic robots with sensing and connectivity constraints. Journal of Dynamic Systems, Measurement, and Control, 139(2), 024501–1–7.CrossRefGoogle Scholar
  8. Kan, Z., Yucelen, T., Doucette, E., & Pasiliao, E. (2017). A finite-time consensus framework over time-varying graph topologies with temporal constraints. Journal of Dynamic Systems, Measurement, and Control, 139(7), 071012–1–6.CrossRefGoogle Scholar
  9. Li, X., Sun, D., & Yang, J. (2013). Preserving multirobot connectivity in rendezvous tasks in the presence of obstacles with bounded control input. IEEE Transactions on Control Systems Technology, 21(6), 2306–2314.CrossRefGoogle Scholar
  10. Lin, J., Morse, A. S., & Anderson, B. D. O. (2003). The multi-agent rendezvous problem. In 42nd IEEE international conference on decision and control (Vol. 2, pp. 1508–1513). IEEE.Google Scholar
  11. Lin, J., Morse, A. S., & Anderson, B. D. O. (2007a). The multi-agent rendezvous problem. Part 1: The synchronous case. SIAM Journal on Control and Optimization, 46(6), 2096–2119.MathSciNetCrossRefMATHGoogle Scholar
  12. Lin, J., Morse, A. S., & Anderson, B. D. O. (2007b). The multi-agent rendezvous problem. Part 2: The asynchronous case. SIAM Journal on Control and Optimization, 46(6), 2120–2147.MathSciNetCrossRefMATHGoogle Scholar
  13. McLain, T. W., Chandler, P. R., Rasmussen, S., & Pachter, M. (2001). Cooperative control of UAV rendezvous. In Proceedings of the 2001 American control conference (pp. 2309–2314). Arlington, VA: IEEE.Google Scholar
  14. Mesbahi, M., & Egerstedt, M. (2010). Graph theoretic methods in multiagent networks (1st ed.). Princeton: Princeton University Press.CrossRefMATHGoogle Scholar
  15. Nascimento, T. P., Moreira, A. P., & Conceicao, A. G. S. (2013). Multi-robot nonlinear model predictive formation control: Moving target and target absence. Robotics and Autonomous Systems, 61(12), 1502–1515.CrossRefGoogle Scholar
  16. Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1), 215–233.CrossRefMATHGoogle Scholar
  17. Ordoñez, B., Moreno, U. F., Cerqueira, J., & Almeida, L. (2012). Generation of trajectories using predictive control for tracking consensus with sensing. Procedia Computer Science, 10, 1094–1099.CrossRefGoogle Scholar
  18. Ren, W., & Beard, R. W. (2008). Distributed consensus in multi-vehicle cooperative control. In E. D. Sontag, et al. (Eds.), Communications and control engineering (1st ed.). London: Springer.Google Scholar
  19. Ren, W., Beard, R. W., & Atkins, E. M. (2005). A survey of consensus problems in multi-agent coordination. In Proceedings of the 2005 American control conference (Vol. 3, pp. 1859–1864).Google Scholar
  20. Sabattini, L., Secchi, C., & Fantuzzi, C. (2016). Coordinated dynamic behaviors for multirobot systems with collision avoidance. IEEE Transactions on Cybernetics, PP(99), 1–12.Google Scholar
  21. Schittkowski, K., & Zillober, C. (1995). Sequential convex programming methods, volume 423 of lecture notes in economics and mathematical systems (pp. 123–141). Berlin: Springer.MATHGoogle Scholar
  22. Su, H., Wang, X., & Chen, G. (2010). Rendezvous of multiple mobile agents with preserved network connectivity. Systems and Control Letters, 59(5), 313–322.MathSciNetCrossRefMATHGoogle Scholar
  23. Svanberg, K. (1987). The method of moving asymptotes—A new method for structural optimization. International Journal for Numerical Methods in Engineering, 24(2), 359–373.MathSciNetCrossRefMATHGoogle Scholar
  24. Yongjie, Y., & Yan, Z. (2009). Collision avoidance planning in multi-robot based on improved artificial potential field and rules. In IEEE international conference on robotics and biomimetics, 2008, Bangkok, Thailand.Google Scholar
  25. Zillober, C., Schittkowski, K., & Moritzen, K. (2004). Very large scale optimization by sequential convex programming. Optimization Methods and Software, 19(1), 103–120.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2018

Authors and Affiliations

  1. 1.Electrical and Electronic Engineering DepartmentFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Automation and Systems DepartmentFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations