# Models for Optimal Online Tuning Based on Computational Intelligence of PID Controllers Applied to Operational Processes of Bulk Reclaimers

- 32 Downloads

## Abstract

This paper considers the development of models for the optimal online tuning of PID controllers based on computational intelligence approaches that are applied to the operational processes of bulk reclaimers. In the first instance, the optimal gains of a PID controller are determined using a structured artificial neural network (ANN), and in the second instance, a fuzzy system is used to carry out online adjustment through a real-time gain scheduling scheme. The bulk resumption process consists of picking up the stored material in stacks and transporting it using conveyor belts for shipment. For the control system, a model based on data pertaining to the electric current in a bucket wheel motor (a device that picks up material) is estimated and compared with the load measured using a scale. The difference between the load estimated by the model and that measured by the scale is the error, and the proposed control system is designed to minimize it. The results of simulations show that the controller models performed better using structured ANNs and fuzzy logic than PID controllers tuned by the second Ziegler–Nichols method, and the PID–fuzzy controller proposed by Zhao and Tomizuka.

## Keywords

Computational intelligence PID controllers Bulk reclaimers Artificial neural network Fuzzy system## Notes

### Acknowledgements

We thank PPGEE of the Federal University of Maranhão for the technical/scientific and practical lessons. We are especially grateful to FAPEMA for encouraging high-level research in the State of Maranhão. We also thank the Department of Physics of the State University of Maranhão for making this research feasible. We thank CAPES for promoting and supporting advanced research that contributed to this work. Finally, the Vale S.A. Company for providing its specialists for practical guidance for the execution of the experiments.

## References

- Alcántara, S., Vilanova, R., & Pedret, C. (2013). PID control in terms of robustness/performance and servo/regulator trade-offs: A unifying approach to balanced autotuning.
*Journal of Process Control*,*23*(4), 527–542.CrossRefGoogle Scholar - Almutairi, N. B., & Zribi, M. (2009). Sliding mode control of a three-dimensional overhead crane.
*Journal of Vibration and Control*,*15*(11), 1679–1730.MathSciNetCrossRefzbMATHGoogle Scholar - Aström, K. J., & Hägglund, T. (1995).
*PID controllers: Theory, design, and tuning*(Vol. 2). Research Triangle Park, NC: Instrument Society of America.Google Scholar - Aström, K. J., & Hägglund, T. (2001). The future of PID control.
*Control Engineering Practice*,*9*(11), 1163–1175.CrossRefGoogle Scholar - Brisilla, R. M., & Sankaranarayanan, V. (2017). Extended state observer-based sliding mode control for multi-input multi-output system with multiple disturbances.
*Journal of Control, Automation and Electrical Systems*,*28*(1), 11–25.CrossRefGoogle Scholar - Castillo-Garcia, F. J., Feliu-Batlle, V., & Rivas-Perez, R. (2013). Frequency specifications regions of fractional-order PI controllers for first order plus time delay processes.
*Journal of Process Control*,*23*(4), 598–612.CrossRefGoogle Scholar - Chang, C.-Y. (2007). Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance.
*IEEE Transactions on Industrial Informatics*,*3*(2), 164–172.CrossRefGoogle Scholar - Chu, Q., Liu, T., & Wang, Y. (2013). Research on excitation controller based on the adaptive fuzzy PID technique. In
*5th international conference on intelligent human-machine systems and cybernetics IHMSC, IEEE*(Vol. 1, pp. 297–300).Google Scholar - Cohen, G. H. (1953). Theoretical consideration of retarded control.
*Transactions of ASME*,*75*, 827–834.Google Scholar - de Moura, J. P., & da Fonseca Neto, J. V. N. (2003). Sistema Especialista para Identificação de Falhas e Tomada de Decisão (Expert System for Fault Identification and Decision Making), Master thesis, UFMA.Google Scholar
- de Moura, J. P., & da Fonseca Neto, J. V. (2016a). Modelo de um Controle de Nível de Sólidos em Silos Usando Sistemas Fuzzy Aplicados Em PLC Industrial (Model of a Level Control of Solids in Silos Using Fuzzy Systems Applied in Industrial PLC). CBA (pp. 51–57).Google Scholar
- de Moura, J. P., da Fonseca Neto, J. V. (2016b). Fuzzy controller in the cargo control wagons dump. In
*IEEE conference on evolving and adaptive intelligent systems (EAIS)*(pp. 10–16).Google Scholar - de Moura, J. P., de Oliveira Serra, L. G., & da Fonseca, J. V. (2013). Logica Fuzzy no Controle de Embarque de Navios no Terminal Marítimo de Ponta da Madeira (Fuzzy Logic in the Control of Shipping of Ships in the Maritime Terminal of Ponta da Madeira). SBAI—Artigo (Article) 4836.Google Scholar
- Desborough, L., & Miller, R. (2002). Increasing customer value of industrial control performance monitoring-Honeywell’s experience. In
*AIChE symposium series*. New York: American Institute of Chemical Engineers (Vol. 326, pp. 169–189).Google Scholar - Dias, C. G., & de Sousa, C. M. (2018). A neuro-fuzzy approach for locating broken rotor bars in induction motors at very low slip.
*Journal of Control, Automation and Electrical Systems*,*29*(4), 1–11.CrossRefGoogle Scholar - Eris, O., & Kurtulan, S. (2011).
*A new PI tuning rule for first order plus dead-time systems*(pp. 1–4). IEEE AFRICON.Google Scholar - Farias, O. S., Santos, J. H. M., & Neto, J. V. F., Labidi, S., Drummond, T., de Moura, J. P. & Neves, S. C. F. (2008). A real time expert system for faults identification in rotary railcar dumpers. In
*ICINCO-ICSO*(pp. 347–350).Google Scholar - Garpinger, O. (2015).
*Analysis and design of software-based optimal PID controllers*. Department of Automatic Control, Lund Institute of Technology, Lund University.Google Scholar - Golub, G. H., & Van Loan, C. F. (2012).
*Matrix computations*(Vol. 3). Baltimore: JHU Press.zbMATHGoogle Scholar - Gopi Krishna Rao, P. V., Subramanyam, M. V., & Satyaprasad, K., (2013). Model based tuning of PID controller. In
*JoCI*(Vol. 16).Google Scholar - Gopi Krishna Rao, P. V., Venkata, S. M., & Kodati, S. (2015). Robust design of PID controller using IMC technique for integrating process based on maximum sensitivity.
*Journal of Control, Automation and Electrical Systems*,*26*, 466–475.CrossRefGoogle Scholar - Ham, F. M., & Kostanic, I. (2000).
*Principles of neurocomputing for science and engineering*. New York: McGraw-Hill Higher Education.Google Scholar - Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011).
*Robust statistics: The approach based on influence functions*(Vol. 114). New York: Wiley.zbMATHGoogle Scholar - Haykin, S. (1994).
*Neural networks: A comprehensive foundation*. Upper Saddle River: Prentice Hall PTR.zbMATHGoogle Scholar - Huber, P. J. (1996).
*Robust statistical procedures*. Philadelphia: SIAM.CrossRefzbMATHGoogle Scholar - Jeng, J.-C. (2015). A model-free direct synthesis method for PI/PID controller design based on disturbance rejection.
*Chemometrics and Intelligent Laboratory Systems*,*147*, 14–29.CrossRefGoogle Scholar - Kar, B., & Roy, P. (2018). A comparative study between cascaded FOPI–FOPD and IOPI–IOPD controllers applied to a level control problem in a coupled tank system.
*Journal of Control, Automation and Electrical Systems*,*29*(3), 340–349.CrossRefGoogle Scholar - Katsuhiko, O. (2009).
*Modern control engineering*(5th ed.). Prentice-Hall Electrical Engineering Series. Instrumentation and Controls Series.Google Scholar - Khayamy, M., Chaoui, H., Oukaour, A., & Gualous, H. (2016). Adaptive fuzzy logic control mixing strategy of DC/DC converters in both discontinuous and continuous conduction modes.
*Journal of Control, Automation and Electrical Systems*,*27*(3), 274–288.CrossRefGoogle Scholar - Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2014). Industry 4.0.
*Business & Information Systems Engineering*,*6*(4), 239–242.CrossRefGoogle Scholar - Lee, H.-H., Liang, Y., & Segura, D. (2006). A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting.
*Journal of Dynamic Systems, Measurement, and Control*,*128*(4), 842–845.CrossRefGoogle Scholar - Lee, M., Shamsuzzoha, M., & Vu, T. N. L. (2008). IMC–PID approach: An effective way to get an analytical design of robust PID controller. In
*ICCAS international conference on control, automation and systems*(pp. 2861–2866).Google Scholar - Le, T. A., Kim, G.-H., Kim, M. Y., & Lee, S.-G. (2012). Partial feedback linearization control of overhead cranes with varying cable lengths.
*International Journal of Precision Engineering and Manufacturing*,*13*(4), 501–507.CrossRefGoogle Scholar - Lopes, B. E., de Moura, J. P., Ribeiro, D. A., e Borges, F. H. C., & de Souza, M. A. (2012). Flow optimization for iron ore reclaiming process. In
*ICINCO*(pp. 425–432).Google Scholar - Mizuyama, D., da Silva, C. E., Goedtel, A., Graciola, C. L., & Palácios, R. H. C. (2018). Neural predictor for surface roughness of turned parts.
*Journal of Control, Automation and Electrical Systems*,*29*(3), 360–370.CrossRefGoogle Scholar - Murrill, P. W. (1967).
*Automatic control of processes*. Scranton: International Textbook Company.Google Scholar - Ngo, Q. H., & Hong, K.-S. (2012). Sliding-mode antisway control of an offshore container crane.
*IEEE/ASME Transactions on Mechatronics*,*17*(2), 201–209.CrossRefGoogle Scholar - O’Dwyer, A. (2009).
*Handbook of PI and PID controller tuning rules*. Singapore: World Scientific.CrossRefzbMATHGoogle Scholar - Pai, N.-S., Chang, S.-C., & Huang, C.-T. (2010). Tuning PI/PID controllers for integrating processes with deadtime and inverse response by simple calculations.
*Journal of Process Control*,*20*(6), 726–733.CrossRefGoogle Scholar - Park, H., Chwa, D., & Hong, K. (2007). A feedback linearization control of container cranes: Varying rope length.
*International Journal of Control Automation and Systems*,*5*(4), 379–387.Google Scholar - Parr, E. A. (1998).
*Industrial control handbook*. New York City: Industrial Press Inc.Google Scholar - Pratap, B., & Purwar, S. (2014). Real-time implementation of neuro adaptive observer-based robust backstepping controller for twin rotor control system.
*Journal of Control, Automation and Electrical Systems*,*25*(2), 137–150.CrossRefGoogle Scholar - Precup, R.-E., & Hellendoorn, H. (2011). A survey on industrial applications of fuzzy control.
*Computers in Industry*,*62*(3), 213–226.CrossRefGoogle Scholar - Rossomando, F. G., & Soria, C. M. (2015). Design and implementation of adaptive neural-PID for non linear dynamics in mobile robots. In
*Institute of electrical and electronics engineers*(pp. 913–918).Google Scholar - Sanchez, E. N., Becerra, H. M., & Velez, C. M. (2007). Combining fuzzy, PID and regulation control for an autonomous mini-helicopter information sciences.
*Information Sciences*,*177*(10), 1999–2022.CrossRefGoogle Scholar - Shamsuzzoha, M. (2014). A unified approach of PID controller tuning for time delay processes. In
*American Control Conference—ACC. IEEE*(pp. 4865–4870).Google Scholar - Sun, N., & Fang, Y. (2012). New energy analytical results for the regulation of underactuated overhead cranes: An end-effector motion-based approach.
*IEEE Transactions on Industrial Electronics*,*59*(12), 4723–4734.CrossRefGoogle Scholar - Verma, S. K., Yadav, S., & Nagar, S. K. (2017). Optimization of fractional order PID controller using grey wolf optimizer.
*Journal of Control, Automation and Electrical Systems*,*28*(3), 314–322.CrossRefGoogle Scholar - Wang, L.-X. (1993). Stable adaptive fuzzy control of nonlinear systems.
*IEEE Transactions on Fuzzy Systems*,*1*(2), 146–165.CrossRefGoogle Scholar - Yang, J. H., & Yang, K. S. (2007). Adaptive coupling control for overhead crane systems.
*Mechatronics*,*17*(2), 143–152.CrossRefGoogle Scholar - Zhao, Z.-Y., Tomizuka, M., & Isaka, S. (1993). Fuzzy gain scheduling of PID controllers.
*IEEE Transactions on Systems, Man, and Cybernetics*,*23*(5), 1392–1398.CrossRefGoogle Scholar - Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers.
*Transactions of the ASME*,*64*(11), 759–768.Google Scholar