Control of Discrete 2-D Takagi–Sugeno Systems via a Sum-of-Squares Approach

  • Redouane Chaibi
  • Abdelaziz Hmamed
  • El Houssaine Tissir
  • Fernando TadeoEmail author


The stabilization of Takagi–Sugeno systems is solved here for the two-dimensional polynomial discrete case, by using the sum-of-squares approach. First, we provide a stabilization condition formulated in terms of polynomial multiple Lyapunov functions. Then, a non-quadratic stabilization condition is developed by applying relaxed stabilization technique. Both conditions can be used for design, by solving them using numerical tools such as SOSTOOLS. A numerical example illustrates the effectiveness of the results.


Discrete 2-D systems Sum-of-Squares (SOS) Stabilization Takagi–Sugeno systems 



Prof. Fernando Tadeo is funded by Conserjería de Educación, Junta de Castilla y Leon with European Regional Development Funds (Grant No. CLU 2017-09 and UIC 233), and by Secretaría de Estado de Investigación, Desarrollo e Innovación (Grant No. DPI2014-54530-R).


  1. Benzaouia, A., Hmamed, A., & Tadeo, F. (2016). Two-dimensional systems. Berlin: Springer.zbMATHGoogle Scholar
  2. Boukili, B., Hmamed, A., & Benzaouia, A. (2015). \(H_{\infty }\) state control for 2D fuzzy FM systems with stochastic perturbation. Circuits, Systems, and Signal Processing, 34(3), 779–796.zbMATHGoogle Scholar
  3. Boukili, B., Hmamed, A., Benzaouia, A., & El Hajjaji, A. (2014). \(H_{\infty }\) filtering of two-dimensional T–S fuzzy systems. Circuits, Systems, and Signal Processing, 33(6), 1737–1761.MathSciNetGoogle Scholar
  4. Boukili, B., Hmamed, A., & Tadeo, F. (2016). Robust \(H_{\infty }\) filtering for 2-D discrete Roesser systems. Journal of Control, Automation and Electrical Systems, 27(5), 497–505.Google Scholar
  5. Chen, J., Xu, S., Zhang, B., Chu, Y., & Zou, Y. (2016). New relaxed stability and stabilization conditions for continuous-time T–S fuzzy models. Information Sciences, 329, 447–460.zbMATHGoogle Scholar
  6. Dang, Q. V., Vermeiren, L., Dequidt, A., & Dambrine, M. (2017). Robust stabilizing controller design for Takagi–Sugeno fuzzy descriptor systems under state constraints and actuator saturation. Fuzzy Sets and Systems, 329, 77–90.MathSciNetzbMATHGoogle Scholar
  7. de Oliveira, M. C., Bernussou, J., & Geromel, J. C. (1999). A new discrete-time robust stability condition. Systems and Control Letters, 37(4), 261–265.MathSciNetzbMATHGoogle Scholar
  8. Ding, D., Li, X., Xie, X., & Liu, D. (2011). Relaxed stabilization conditions for discrete-time 2-D TS fuzzy systems. In Chinese control and decision conference (CCDC) (pp. 3459–3464). IEEE.Google Scholar
  9. Du, C., & Xie, L. (2002). \(H_{\infty }\) control and filtering of two-dimensional systems (Vol. 278). Berlin: Springer.Google Scholar
  10. El-Kasri, C., Hmamed, A., Tissir, E. H., & Tadeo, F. (2013). Robust \(H_{\infty }\) filtering for uncertain two-dimensional continuous systems with time-varying delays. Multidimensional Systems and Signal Processing, 24(4), 685–706.MathSciNetzbMATHGoogle Scholar
  11. Fang, C. H., Liu, Y. S., Kau, S. W., Hong, L., & Lee, C. H. (2006). A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14(3), 386–397.Google Scholar
  12. Feng, G. (2004). Stability analysis of discrete-time fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Transactions on Fuzzy Systems, 12(1), 22–28.MathSciNetGoogle Scholar
  13. Gao, J., & Wang, W. (2014). \(H_{\infty }\) control For 2-D fuzzy FM II system with actuator saturation. In Proceedings of the 33rd Chinese control conference (CCC) (pp. 4435–4439).Google Scholar
  14. Guelton, K., Manamanni, N., Koumba-Emianiwe, D. L., & Chinh, C. D. (2011). SOS stability conditions for nonlinear systems based on a polynomial fuzzy Lyapunov function. IFAC Proceedings Volumes, 44(1), 12777–12782.Google Scholar
  15. Hmamed, A., Chaibi, R., & Tadeo, F. (2016). Stabilization of discrete-time 2-D TS Fuzzy system via a sum of squares (SOS) approach. In 5th IEEE international conference on systems and control (ICSC) (pp. 109–114).Google Scholar
  16. Hmamed, A., Mesquine, F., Tadeo, F., Benhayoun, M., & Benzaouia, A. (2010). Stabilization of 2D saturated systems by state feedback control. Multidimensional Systems and Signal Processing, 21(3), 277–292.MathSciNetzbMATHGoogle Scholar
  17. Johansson, M., Rantzer, A., & Arzen, K. E. (1999). Piecewise quadratic stability of fuzzy systems. IEEE Transactions on Fuzzy Systems, 7(6), 713–722.Google Scholar
  18. Li, Z., Park, J. B., & Joo, Y. H. (2001). Chaotifying continuous-time TS fuzzy systems via discretization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(10), 1237–1243.Google Scholar
  19. Marszalek, W. (1984). Two-dimensional state-space discrete models for hyperbolic partial differential equations. Applied Mathematical Modelling, 8, 11–14.MathSciNetzbMATHGoogle Scholar
  20. Mozelli, L. A., Palhares, R. M., Souza, F. O., & Mendes, E. M. (2009). Reducing conservativeness in recent stability conditions of TS fuzzy systems. Automatica, 45(6), 1580–1583.MathSciNetzbMATHGoogle Scholar
  21. Naamane, K., Chaibi, R., Tissir, E. H., & Hmamed, A. (2017). Stabilization of discrete-time TS fuzzy systems with saturating actuators. In International conference on advanced technologies for signal and image processing (ATSIP) (pp. 1–5). IEEE.Google Scholar
  22. Owens, D. H., Amann, N., Rogers, E., & French, M. (2000). Analysis of linear iterative learning control schemes—A 2D systems/repetitive processes approach. Multidimensional Systems and Signal Processing, 11(1), 125–177.MathSciNetzbMATHGoogle Scholar
  23. Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, S., Seiler, P., & Parrilo, P. A. (2013). SOSTOOLS: Sum of squares optimization toolbox for MATLAB version 3.00. Pasadena: California Institute of Technology.Google Scholar
  24. Parrilo, P. A. (2000). Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization (Doctoral dissertation, California Institute of Technology).Google Scholar
  25. Prajna, S., Papachristodoulou, A., Seiler, P., & Parrilo, P. A. (2004). SOSTOOLS: Sum of squares optimization toolbox for MATLAB. Users guide, version 2.00. Pasadena: California Institute of Technology.Google Scholar
  26. Rogers, E., & Owens, D. H. (1992). Stability analysis for linear repetitive processes. Berlin: Springer.zbMATHGoogle Scholar
  27. Sala, A., & Arino, C. (2007). Relaxed stability and performance conditions for Takagi–Sugeno fuzzy systems with knowledge on membership function overlap. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(3), 727–732.Google Scholar
  28. Shaker, H. R., & Shaker, F. (2014). Lyapunov stability for continuous-time multidimensional nonlinear systems. Nonlinear Dynamics, 75(4), 717–724.MathSciNetzbMATHGoogle Scholar
  29. Siala, F., Gassara, H., Chaabane, M., & El Hajjaji, A. (2013). Stability analysis of polynomial fuzzy systems with time-delay via sum of squares (SOS) approach. In Proceedings of 14th international conference on sciences and techniques of automatic control and computer engineering (STA) (pp. 197–200).Google Scholar
  30. Silva, L. F., Leite, V. J., Castelan, E. B., & Klug, M. (2014). Local stabilization of time-delay nonlinear discrete-time systems using Takagi-Sugeno models and convex optimization. Mathematical Problems in Engineering, 2014, 587510. Scholar
  31. Sulikowski, B., Galkowski, K., Rogers, E., & Owens, D. H. (2004). Output feedback control of discrete linear repetitive processes. Automatica, 40(12), 2167–2173.MathSciNetzbMATHGoogle Scholar
  32. Sulikowski, B., Galkowski, K., Rogers, E., & Owens, D. H. (2006). PI control of discrete linear repetitive processes. Automatica, 42(5), 877–880.MathSciNetzbMATHGoogle Scholar
  33. Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 1, 116–132.zbMATHGoogle Scholar
  34. Tanaka, K., Ohtake, H., & Wang, H. O. (2008). An SOS-based stable control of polynomial discrete fuzzy systems. In IEEE American control conference (pp. 4875–4880).Google Scholar
  35. Tanaka, K., Yoshida, H., Ohtake, H., & Wang, H. O. (2007). A sum of squares approach to stability analysis of polynomial fuzzy systems. In American control conference, ACC’07 (pp. 4071–4076). IEEE.Google Scholar
  36. Wang, H. O., Tanaka, K., & Griffin, M. F. (1996). An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems, 4(1), 14–23.Google Scholar
  37. Xiang-Peng, X., & Zhang, H. G. (2010a). Stabilization of discrete-time 2-D TS fuzzy systems based on new relaxed conditions. Acta Automatica Sinica, 36(2), 267–273.MathSciNetGoogle Scholar
  38. Xiang-Peng, X. I. E., & Zhang, H. G. (2010b). Convergent stabilization conditions of discrete-time 2-D TS fuzzy systems via improved homogeneous polynomial techniques. Acta Automatica Sinica, 36(9), 1305–1311.MathSciNetGoogle Scholar
  39. Xiaodong, L., & Qingling, Z. (2003). New approaches to \(H_{\infty }\) controller designs based on fuzzy observers for TS fuzzy systems via LMI. Automatica, 39(9), 1571–1582.MathSciNetzbMATHGoogle Scholar
  40. Xie, X. P., Zhang, Z. W., & Hu, S. L. (2015). Control synthesis of roesser type discrete-time 2-D T–S fuzzy systems via a multi-instant fuzzy state-feedback control scheme. Neurocomputing, 151, 1384–1391.Google Scholar
  41. Yang, H., Xia, Y., Qiu, J., & Zhang, J. (2010). Filtering for a class of discrete-time systems with time-delays via delta operator approach. International Journal of Systems Science, 41(4), 423–433.MathSciNetzbMATHGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.LESSI, Department of PhysicsFaculty of Sciences Dhar El MehrazFes-AtlasMorocco
  2. 2.Departamento de Ingenieria de Sistemas y Automatica, Institute of Sustainable ProcessesUniversidad de ValladolidValladolidSpain

Personalised recommendations