Advertisement

Design of a Smart Pressure Transmitter and Its Temperature Compensation Using Artificial Neural Network

  • Sunita Sinha
  • Nirupama Mandal
Article
  • 6 Downloads

Abstract

This paper presents a smart pressure transmitter using bellow as primary sensor. The deflection of bellow is converted into electrical output using hall probe sensor as secondary sensor. The output Hall voltage is affected by change in input parameters like temperature. So firstly the effect of temperature on Hall voltage is derived mathematically and then experimentally analyzed. This effect of temperature on output Hall voltage is then compensated using artificial neural network. The compensated output Hall voltage is then converted into (4–20) mA current signal using signal conditioning circuit. The proposed design, experimental and testing results are reported in this paper.

Keywords

Artificial neural network (ANN) Pressure measurement Bellows Temperature compensation 

References

  1. Beeby, S. P., Stuttle, M., & White, N. M. (2000). Design and fabrication of a low-cost microengineered silicon pressure sensor with linearised output. IEE Proceedings-Science, Measurement and Technology, 147, 127–130.  https://doi.org/10.1049/ip-smt:20000355.CrossRefGoogle Scholar
  2. Bentley, P. (1995). Principles of measurement systems. Singapore: Longman Singapore publishers Ltd.Google Scholar
  3. Bera, S. C., Mandal, N., & Sarkar, R. (2011). Study of a pressure transmitter using an improved inductance bridge network and bourdon tube as transducer. IEEE Transactions on Instrumentation and Measurement, 60, 1453–1460.  https://doi.org/10.1109/TIM.2010.2090697.CrossRefGoogle Scholar
  4. Chattopadhyay, S., & Sarkar, J. (2012). Design and development of a reluctance type pressure transmitter. In 7th IEEE international conference on electrical & computer engineering (ICECE) (pp. 70–73).  https://doi.org/10.1109/ICECE.2012.6471487.
  5. Chattopadhyay, S., Sarkar, J., & Bera, S. C. (2013). A low cost design and development of a reluctance type pressure transducer. Measurement, 46, 491–496.  https://doi.org/10.1016/j.measurement.2012.08.006.CrossRefGoogle Scholar
  6. Chen, G., Sun, T., Wang, P., & Sun, B. (2006). Design of temperature compensation system of pressure sensors. In IEEE international conference on information acquisition (pp. 1042–1046).  https://doi.org/10.1109/ICIA.2006.305883.
  7. Dong, N., Wang, S., Jiang, L., Jiang, Y., Wang, P., & Zhang, L. (2018). Pressure and temperature based on graphene diaphragm and fiber Bragg gratings. IEEE Photonics Technology Letters, 30, 431–434.  https://doi.org/10.1109/LPT.2017.2786292.CrossRefGoogle Scholar
  8. Gurney, K. (1997). An introduction to neural networks. London: UCL Press.CrossRefGoogle Scholar
  9. Hooshmand, R. A., & Joorabian, M. (2006). Design and optimization of electromagnetic flowmeter for conductive liquids and its calibration based on neural networks. IEE Proceedings on science Measurement and Technology, 153, 139–146.  https://doi.org/10.1049/ip-smt:20050042.CrossRefGoogle Scholar
  10. Huang, J., Yuan, H., Cui, Y., & Zheng, Z. (2010). Nonintrusive pressure measurement with capacitance method based on FLANN. IEEE Transactions on Instrumentation and Measurement, 59, 2914–2920.  https://doi.org/10.1109/TIM.2010.2045933.CrossRefGoogle Scholar
  11. Kumar, V. N., & Narayana, K. V. L. (2016). Development of an ANN-based pressure transducer. IEEE Sensors Journal, 16, 53–60.  https://doi.org/10.1109/JSEN.2015.2477458.CrossRefGoogle Scholar
  12. Liptak, B. G. (1999). Process measurement and analysis. Oxford: Butterworth Heinman.Google Scholar
  13. Massicotte, D., Legendre, S., & Barwicz, A. (1998). Neural-network-based method of calibration and measurand reconstruction for a high-pressure measuring system. IEEE Transactions on Instrumentation and Measurement, 47, 362–370.  https://doi.org/10.1109/19.744175.CrossRefGoogle Scholar
  14. Patra, J. C. (1997). An artificial neural network-based smart capacitive pressure sensor. Measurement, 22, 113–121.  https://doi.org/10.1016/S0263-2241(97)00074-2.CrossRefGoogle Scholar
  15. Patra, J. C., Juhola, M., & Meher, P. K. (2008). Intelligent sensors using computationally efficient Chebyshev neural networks. IET Science, Measurement and Technology, 2, 68–75.  https://doi.org/10.1049/iet-smt:20070061.CrossRefGoogle Scholar
  16. Patra, J. C., Meher, P. K., & Chakraborty, G. (2011). Development of Laguerre neural-network-based intelligent sensors for wireless sensor networks. IEEE Transactions on Instrumentation and Measurement, 60, 725–734.  https://doi.org/10.1109/TIM.2010.2082390.CrossRefGoogle Scholar
  17. Patra, J. C., & Panda, G. (1998). ANN-based intelligent pressure sensor in noisy environment. Measurement, 23, 229–238.  https://doi.org/10.1016/S0263-2241(98)00026-8.CrossRefGoogle Scholar
  18. Patra, J. C., & Van den Bos, A. (1999). Modeling and development of an ANN-based smart pressure sensor in a dynamic environment. Measurement, 26, 249–262.  https://doi.org/10.1016/S0263-2241(99)00044-5.CrossRefGoogle Scholar
  19. Patra, J. C., & Van den Bos, A. (2000). Modeling of an intelligent pressure sensor using functional link artificial neural networks. ISA Transactions, 39, 15–27.  https://doi.org/10.1016/S0019-0578(99)00035-X.CrossRefGoogle Scholar
  20. Rajita, G., Banerjee, D., Mandal, N., & Bera, S. C. (2015). Design and analysis of Hall effect probe-based pressure transmitter using bellows as sensor. IEEE Transactions on Instrumentation and Measurement, 64, 2548–2556.  https://doi.org/10.1109/TIM.2015.2403152.CrossRefGoogle Scholar
  21. Rath, S. K., Patra, J. C., & Kot, A. C. (2000). An intelligent pressure sensor with self-calibration capability using artificial neural networks. In IEEE international conference on systems, man, and cybernetics (pp. 2563–2568).  https://doi.org/10.1109/ICSMC.2000.884379.
  22. Reverter Cubarsí, F., Horak, G., Bilas, V., & Gasulla Forner, M. (2009). Novel and low-cost temperature compensation technique for piezoresistive pressure sensors. In Fundamental and applied metrology XIX IMEKO World Congress (pp. 2084–2087). http://hdl.handle.net/2117/12816.
  23. Rogers, J. E., Yoon, Y.-K., Sheplak, M., & Jack, J. W. (2018). A passive wireless microelectromechanical pressure sensor for harsh environments. Journal of Micro electromechanical Systems, 27, 73–85.  https://doi.org/10.1109/JMEMS.2017.2774000.CrossRefGoogle Scholar
  24. Sinha, S., & Mandal, N. (2017). Design and analysis of an intelligent flow transmitter using artificial neural network. IEEE Sensors Letters, 1, 1–4.  https://doi.org/10.1109/LSENS.2017.2701409.CrossRefGoogle Scholar
  25. Vaegae, N. K., Komanapalli, V. L. N., & Malla, S. (2016). Development of an intelligent pressure measuring technique for bellows using radial basis function neural network. Sensors and Actuators, A: Physical, 238, 240–248.  https://doi.org/10.1016/j.sna.2015.12.017.CrossRefGoogle Scholar
  26. Yao, Z., Liang, T., Jia, P., Hong, Y., Qi, L., Lei, C., et al. (2016). Passive resistor temperature compensation for high-temperature piezoresistive pressure sensor. Sensors, 16, 1142.  https://doi.org/10.3390/s16071142.CrossRefGoogle Scholar
  27. Yegnanarayana, B. (2005). Artificial neural networks. New York: Academic.Google Scholar
  28. Zenere, A., & Zorzi, M. (2018). On the coupling of model predictive control and robust Kalman filtering. IET Control Theory and Applications, 12, 1873–1881.  https://doi.org/10.1049/iet-cta.2017.1074.CrossRefGoogle Scholar
  29. Zhou, H., Zhou, H., Zhang, H., Ge, X., Zhao, Y., & Lin, W. (2017). Pressure measurement based on multi-waves fusion algorithm. IET Science, Measurement and Technology, 11, 354–362.  https://doi.org/10.1049/iet-smt.2016.0439.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2018

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIIT (ISM)DhanbadIndia

Personalised recommendations