Advertisement

A New Method to Estimate Induction Machine Parameters from the No-Load Startup Transient

  • Luís A. Pereira
  • Matheus Perin
  • Luís F. A. Pereira
Article
  • 301 Downloads

Abstract

The paper proposes a new method to estimate the electrical parameters of three-phase induction machines based only on the voltages and currents of the stator acquired during a no-load startup test. The method is based on the instantaneous impedance and on the rotor speed, both estimated according to procedures detailed in the paper. Parameter variations with the speed are determined based on the concept of data windowing and using a single-cage model. Theoretical and practical considerations are presented and discussed, with the method being validated through simulations and also through experimental results obtained for eleven machines with power from 5.5 to 75 kW. The most relevant characteristic of the proposed method is that the variation of the resistance and leakage inductance of the rotor during the transient, caused mainly by skin effect, can be effectively and systematically assessed. The practical results proved that the method has great potential to advantageously replace traditional no-load and blocked-rotor tests as it requires less time and has much lower associated costs.

Keywords

Induction machine Parameter estimation of induction machines Performance of induction machines 

Notes

Acknowledgements

The authors would like to thank WEG Equipamentos Elétricos (Jaraguá do Sul, Brazil) for the technical and financial support. The authors also thank the Brazilian funding agencies CNPq and CAPES for the Grants Number 302917/2015-2 and 1562424.

References

  1. Belahcen, A., & Arkkio, A. (2008). Comprehensive dynamic loss model of electrical steel applied to fe simulation of electrical machines. IEEE Transactions on Magnetics, 44(6), 886–889.  https://doi.org/10.1109/TMAG.2007.916358.CrossRefzbMATHGoogle Scholar
  2. Benzaquen, J., Rengifo, J., Albanez, E., & Aller, J. M. (2017). Parameter estimation for deep-bar induction machines using instantaneous stator measurements from a direct startup. IEEE Transactions on Energy Conversion, PP(99), 1–1.  https://doi.org/10.1109/TEC.2017.2657647.Google Scholar
  3. Brown, J. E., & Grantham, C. (1975). Determination of the parameters and parameter variations of a 3-phase induction motor having a current-displacement rotor. Proceedings of the Institution of Electrical Engineers, 122(9), 919–921.  https://doi.org/10.1049/piee.1975.0248.CrossRefGoogle Scholar
  4. Chiniforoosh, S., Vargas, L.M., Wang, L., & Jatskevich, J. (2008). Online characterization procedure for induction machines using start-up and loading transients. In 2008 IEEE Canada Electric Power Conference (pp. 1–5).  https://doi.org/10.1109/EPC.2008.4763364.
  5. Cirrincione, M., Pucci, M., Cirrincione, G., & Capolino, G. A. (2003). A new experimental application of least-squares techniques for the estimation of the induction motor parameters. IEEE Transactions on Industry Applications, 39(5), 1247–1256.  https://doi.org/10.1109/TIA.2003.816565.CrossRefzbMATHGoogle Scholar
  6. Dupre, L., De Wulf, M., & Makaveev, D. (2003). Modelling of electromagnetic losses in asynchronous machines. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 22(4), 1051–1065.CrossRefGoogle Scholar
  7. Grantham, C., & McKinnon, D. J. (2003). Rapid parameter determination for induction motor analysis and control. IEEE Transactions on Industry Applications, 39(4), 1014–1020.  https://doi.org/10.1109/TIA.2003.813737.CrossRefGoogle Scholar
  8. Guimarães, J. M. C., Bernardes, J. V., Hermeto, A. E., & da Costa Bortoni, E. (2014). Parameter determination of asynchronous machines from manufacturer data sheet. IEEE Transactions on Energy Conversion, 29(3), 689–697.  https://doi.org/10.1109/TEC.2014.2317525.CrossRefGoogle Scholar
  9. Haque, M. (1993). Estimation of three-phase induction motor parameters. Electric Power Systems Research, 26(3), 187–193.  https://doi.org/10.1016/0378-7796(93)90012-4.CrossRefGoogle Scholar
  10. IEEE. (2018). IEEE standard test procedure for polyphase induction motors and generators. IEEE Std 112-2017 (Revision of IEEE Std 112-2004) (pp. 1–115).  https://doi.org/10.1109/IEEESTD.2018.8291810.
  11. Klaes, N. R. (1993). Parameter identification of an induction machine with regard to dependencies on saturation. IEEE Transactions on Industry Applications, 29(6), 1135–1140.  https://doi.org/10.1109/28.259724.CrossRefGoogle Scholar
  12. Kojooyan-Jafari, H., Monjo, L., Córcoles, F., & Pedra, J. (2015). Using the instantaneous power of a free acceleration test for squirrel-cage motor parameters estimation. IEEE Transactions on Energy Conversion, 30(3), 974–982.  https://doi.org/10.1109/TEC.2015.2399697.CrossRefGoogle Scholar
  13. Krause, P., Wasynczuk, O., Sudhoff, S., Society, I.P.E. (2002). Analysis of electric machinery and drive systems. IEEE Press series on power engineering. New York: IEEE Press.Google Scholar
  14. Lipo, T. A., & Consoli, A. (1984). Modeling and simulation of induction motors with saturable leakage reactances. IEEE Transactions on Industry Applications., IA–20(1), 180–189.  https://doi.org/10.1109/TIA.1984.4504392.CrossRefGoogle Scholar
  15. Monjo, L., Córcoles, F., & Pedra, J. (2013). Saturation effects on torque- current-slip curves of squirrel-cage induction motors. IEEE Transactions on Energy Conversion, 28(1), 243–254.  https://doi.org/10.1109/TEC.2012.2232672.CrossRefGoogle Scholar
  16. Monjo, L., Kojooyan-Jafari, H., Córcoles, F., & Pedra, J. (2015). Squirrel-cage induction motor parameter estimation using a variable frequency test. IEEE Transactions on Energy Conversion, 30(2), 550–557.  https://doi.org/10.1109/TEC.2014.2362964.CrossRefGoogle Scholar
  17. Moons, C., & Moor, B. D. (1995). Parameter identification of induction motor drives. Automatica, 31(8), 1137–1147.  https://doi.org/10.1016/0005-1098(95)00016-P.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Mthombeni, L., & Pillay, P. (2004). Core losses in motor laminations exposed to high-frequency or nonsinusoidal excitation. IEEE Transactions on Industry Applications, 40(5), 1325–1332.  https://doi.org/10.1109/TIA.2004.834099.CrossRefGoogle Scholar
  19. Pedra, J., Candela, I., & Sainz, L. (2009). Modelling of squirrel-cage induction motors for electromagnetic transient programs. IET Electric Power Applications, 3(2), 111–122.  https://doi.org/10.1049/iet-epa:20080043.CrossRefGoogle Scholar
  20. Pereira, L. A., Pereira, L. F. A., Haffner, S., Sogari, P., & Perin, M. (2017a). Estimation of parameters of induction machines from no-load starting without speed acquisition. In 2017 IEEE International Electric Machines and Drives Conference (IEMDC) (pp. 1–7).  https://doi.org/10.1109/IEMDC.2017.8002111.
  21. Pereira, L. A., Pereira, L. F. A., Perin, M., Sogari, P. A. B., & Haffner, S. (2017b). Estimation of parameters of induction machines based on instantaneous impedance. In 2017 IEEE International Electric Machines and Drives Conference (IEMDC) (pp. 1–8).  https://doi.org/10.1109/IEMDC.2017.8002112.
  22. Reed, D. M., Hofmann, H. F., & Sun, J. (2016). Offline identification of induction machine parameters with core loss estimation using the stator current locus. IEEE Transactions on Energy Conversion, 31(4), 1549–1558.  https://doi.org/10.1109/TEC.2016.2601781.CrossRefGoogle Scholar
  23. Rengifo, J., Aller, J. M., Bueno, A., Viola, J., & Restrepo, J. (2012). Parameter estimation method for induction machines using the instantaneous impedance during a dynamic start-up. In 2012 VI Andean Region International Conference (pp. 11–14).  https://doi.org/10.1109/Andescon.2012.13.
  24. Rengifo, J., Benzaquen, J., & Aller, J. M. (2015). Parameter estimation method for induction machines using instantaneous voltage and current measurements. Revista Facultad de Ingeniería Universidad de Antioquia, 75, 57–66.Google Scholar
  25. Stephan, J., Bodson, M., & Chiasson, J. (1994). Real-time estimation of the parameters and fluxes of induction motors. IEEE Transactions on Industry Applications, 30(3), 746–759.  https://doi.org/10.1109/28.293725.CrossRefGoogle Scholar
  26. Stephens, R. (2013). Essential Algorithms: A Practical Approach to Computer Algorithms. Essentials series, Wiley. https://books.google.com.br/books?id=QVAuAAAAQBAJ.
  27. Sudhoff, S. D., Aliprantis, D. C., Kuhn, B. T., & Chapman, P. L. (2003). Experimental characterization procedure for use with an advanced induction machine model. IEEE Transactions on Energy Conversion, 18(1), 48–56.  https://doi.org/10.1109/TEC.2002.808333.CrossRefGoogle Scholar
  28. Štumberger, B., Goričan, V., Štumberger, G., Hamler, A., Trlep, M., & Jesenik, M. (2003). Accuracy of iron loss calculation in electrical machines by using different iron loss models. Journal of Magnetism and Magnetic Materials, 254, 269–271.  https://doi.org/10.1016/S0304-8853(02)00790-4.CrossRefzbMATHGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2018

Authors and Affiliations

  1. 1.Graduate Program on Electrical Engineering (PPGEE)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations