Model Reduction by New Clustering Method and Frequency Response Matching

Article
  • 185 Downloads

Abstract

In this paper, mixed method of linear, time-invariant system model reduction method is suggested. A novel clustering algorithm based on Lehmer measure is utilized in the proposed method to obtain the reduced-order denominator polynomial. The selection of poles to form cluster center is based on the viewpoint of important poles contributing to the system is preserved by dominant pole algorithm. Having obtained the denominator polynomial of the reduced model, the coefficient of the numerator is found using the frequency response matching method. The reduction algorithm is fully computer oriented. The reduced model is stable if the original model is stable. Moreover, this method gives a good quality approximation in both the transient and the steady-state responses of the original system.

Keywords

Order reduction Clustering Lehmer measure Frequency response matching Stability Integral square error 

References

  1. Appiah, R. K. (1979). Pade methods of Hurwitz polynomial approximation with application to linear system reduction. International Journal of Control, 29(1), 39–48.CrossRefMATHMathSciNetGoogle Scholar
  2. Bistritz, Y., & Langholz, G. (1979). Model reduction by Chebyshev polynomial techniques. IEEE Transactions on Automatic Control, 24(5), 741–747.CrossRefMATHGoogle Scholar
  3. Bultheel, A., & Barel, M. V. (1986). Padé techniques for model reduction in linear system theory: A survey. Journal of Computational and Applied Mathematics, 14, 401–438.CrossRefMATHMathSciNetGoogle Scholar
  4. Chahlaoui, Y., & Van Dooren, P. (2005). Benchmark examples for model reduction of linear time-invariant dynamical systems. In P. Benner, V. Mehrmann, & Sorensen (Eds.), Dimension reduction of large-scale systems (pp. 379–392). Berlin, Heidelberg: Springer-Verlag.Google Scholar
  5. Chen, C. F., & Shieh, L. S. (1970). An algebraic method for control systems design. International Journal of Control, 11(5), 717–739.CrossRefMATHGoogle Scholar
  6. Chen, T. C., Chang, C. Y., & Han, K. W. (1979). Reduction of transfer functions by the stability-equation method. Journal of the Franklin Institute, 308(4), 389–404.CrossRefMATHMathSciNetGoogle Scholar
  7. Chen, T. C., Chang, C. Y., & Han, K. W. (1980a). Model reduction using the stability-equation method and the continued-fraction method. International Journal of Control, 32(1), 81–94.CrossRefMATHMathSciNetGoogle Scholar
  8. Chen, T. C., Chang, C. Y., & Han, K. W. (1980b). Model reduction using the stability-equation method and the Padé approximation method. Journal of the Franklin Institute, 309(6), 473–490.CrossRefMATHMathSciNetGoogle Scholar
  9. Chuang, S. C. (1976). Homographic transformation for the simplification of continuous-time transfer functions by Padé approximation. International Journal of Control, 23(6), 821–826.CrossRefMATHMathSciNetGoogle Scholar
  10. Desai, S. R., & Prasad, R. (2013). A new approach to order reduction using stability equation and big bang big crunch optimization. Systems Science & Control Engineering, 1(1), 20–27.CrossRefGoogle Scholar
  11. Hutton, M., & Friedland, B. (1975). Routh approximations for reducing order of linear, time-invariant systems. IEEE Transactions on Automatic Control, 20(3), 329–337.CrossRefMATHMathSciNetGoogle Scholar
  12. Komarasamy, R., Albhonso, N., & Gurusamy, G. (2011). Order reduction of linear systems with an improved pole clustering. Journal of Vibration and Control, 18(12), 1876–1885.CrossRefMathSciNetGoogle Scholar
  13. Krishnamurthi, V., & Seshadri, V. (1976). A simple and direct method of reducing order of linear systems using routh approximations in the frequency domain. IEEE Transactions on Automatic Control, 21(5), 797–799.CrossRefMathSciNetGoogle Scholar
  14. Krishnamuthy, V., & Seshadri, V. (1978). Model reduction using the Routh stability criterion. IEEE Transactions on Automatic Control, 23, 729–731.CrossRefGoogle Scholar
  15. Langhoz, G., & Bistrltz, Y. (1980). Model reduction of dynamic systems over a frequency interval\(\dagger \). International Journal of Control, 31(1), 51–62.CrossRefMathSciNetGoogle Scholar
  16. Lin, P. L., & Wu, Y. C. (1982). Reduction of transfer functions from the stability-equation method and complex curve fitting. Journal of the Franklin Institute, 314(2), 109–121.CrossRefMATHGoogle Scholar
  17. Lucas, T. (1983). Factor division: A useful algorithm in model reduction. Control Theory and Applications., 130(6), 1981–1983.Google Scholar
  18. Martins, N., & Quintão, P. E. M. (2003). Computing dominant poles of power system multlvariable transfer functions. IEEE Transactions on Power Systems, 11(1), 152–159.CrossRefGoogle Scholar
  19. Mittal, A. K., Prasad, R., & Sharama, S. P. (2004). Reduction of linear dynamic system using an error minimization technique. Journal of the Institution of Engineers (India), 84, 201–204.Google Scholar
  20. Mukherjee, S., & Mittal, R. C. (2005). Model order reduction using response-matching technique. Journal of the Franklin Institute, 342(5), 503–519.CrossRefMATHMathSciNetGoogle Scholar
  21. Ouyang, M., Liaw, C., & Pan, C. (1987). Model reduction by power decomposition and frequency response matching. IEEE Transactions on Automatic Control, 32(1), 59–62.CrossRefMATHGoogle Scholar
  22. Pal, J. (1983). Improved Pade approximants using stability equation method. Electronics Letters, 19(11), 3–4.CrossRefGoogle Scholar
  23. Parmar, G., Mukherjee, S., & Prasad, R. (2007a). Reduced order modelling of linear multivariable systems using particle swarm optimisation technique. International Journal of Innovative Computing and Applications, 1(2), 128.CrossRefGoogle Scholar
  24. Parmar, G., Mukherjee, S., & Prasad, R. (2007b). System reduction using factor division algorithm and eigen spectrum analysis. Applied Mathematical Modelling, 31(11), 2542–2552.CrossRefMATHGoogle Scholar
  25. Parthasarathy, R., & John, S. (1978). System reduction using Cauer continued fraction expansion about \(s=0\) and \(s=\infty \) alternately. Electronics Letters, 18(23), 9–10.Google Scholar
  26. Philip, B., & Pal, J. (2010). An evolutionary computation based approach for reduced order modelling of linear systems. IEEE International Conference on Computational Intelligence and Computing Research, 2010, 1–8.CrossRefGoogle Scholar
  27. Prasad, R., & Pal, J. (1991). Use of continued fraction expansion for stable reduction of linear multivariable systems. Institution of Engineers India Part Electrical Engineering Division, 72, 43–43.Google Scholar
  28. Rao, S. V., & Lammba, S. S. (1974). A new frequency domain technique for the simplification of linear dynamic systems. International Journal of Control, 20(1), 71–79.CrossRefGoogle Scholar
  29. Reddy, A. S. S. R. (1976). A method for frequency domain simplification of transfer functions. International Journal of Control, 23(3), 403–408.CrossRefMATHGoogle Scholar
  30. Saadvandi, M., Meerbergen, K., & Jarlebring, E. (2012). On dominant poles and model reduction of second order time-delay systems. Applied Numerical Mathematics, 62(1), 21–34.CrossRefMATHMathSciNetGoogle Scholar
  31. Shamash, Y. (1980a). Failure of the Routh–Hurwitz method of reduction. IEEE Transactions on Automatic Control, 25(2), 313–314.CrossRefMATHMathSciNetGoogle Scholar
  32. Shamash, Y. (1980b). Stable biased reduced order models using the Routh method of reduction. International Journal of Systems Science, 11(5), 641–654.Google Scholar
  33. Singh, J., Vishwakarma, C. B., & Chattterjee, K. (2016). Biased reduction method by combining improved modified pole clustering and improved Pade approximations. Applied Mathematical Modelling, 40(2), 1418–1426.CrossRefMathSciNetGoogle Scholar
  34. Sinha, A. K., & Pal, J. (1990). Simulation based reduced order modelling using a clustering technique. Computers & Electrical Engineering, 16(3), 159–169.CrossRefGoogle Scholar
  35. Skogestad, S., & Postlethwaite, I. (2007). Multivariable feedback control: Analysis and design (Vol. 2). New York: BOOK, Wiley.MATHGoogle Scholar
  36. Soloklo, H. N., & Farsangi, M. M. (2013). Chebyshev rational functions approximation for model order reduction using harmony search, 20, 771–777.Google Scholar
  37. Soloklo, H. N., & Farsangi, M. M. (2015). Model order reduction by using Legendre expansion and harmony search algorithm. Majlesi Journal of Electrical Engineering, 9(1), 25–35.Google Scholar
  38. Soloklo, H. N., Hajmohammadi, R., & Farsangi, M. M. (2015). Model order reduction based on moment matching using Legendre wavelet and harmony search algorithm. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 39(E1), 39–54.Google Scholar
  39. Soloklo, H. N., Nali, O., & Farsangi, M. M. (2014). Model reduction by Hermite polynomials and genetic algorithm. Journal of Mathematics and Computer Science, 9, 188–202.Google Scholar
  40. Stolarsky, K. B. (1996). Holder means, Lehmer Means, and \(\text{ x }^{-1}\) log cosh x. Journal of Mathematical Analysis and Applications, 202, 810–818.CrossRefMATHMathSciNetGoogle Scholar
  41. Vishwakarma, C. B., & Prasad, R. (2008). Clustering method for reducing order of linear system using Pade approximation. IETE Journal of Research., 54(5), 326–330.CrossRefGoogle Scholar
  42. Vishwakarma, C. B., & Prasad, R. (2009). MIMO system reduction using modified pole clustering and genetic algorithm. Modelling and Simulation in Engineering, 2009, 1–5.CrossRefGoogle Scholar
  43. Wan, B.-W. (1981). Linear model reduction using Mihailov criterion and Padé approximation technique. International Journal of Control, 33(6), 1073–1089.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2016

Authors and Affiliations

  1. 1.Department of Electrical and Instrumentation EngineeringThapar UniversityPatialaIndia

Personalised recommendations