Advertisement

Multivariable Greenhouse Control Using the Filtered Smith Predictor

  • Sergio A. Castaño GiraldoEmail author
  • Rodolfo C. C. Flesch
  • Julio E. Normey-Rico
Article

Abstract

The increasing demand for high-efficiency greenhouse control systems motivates the interest in ensuring optimal growth climate conditions into the system. The greenhouse climate control is complex because of the strong coupling between the two main controlled variables (temperature and humidity), the time delays present within the control loop and the high nonlinear interaction between the physical and the biological subsystems. In this context, the idea of this work is to improve the robust behavior of the Filtered Smith Predictor (FSP) in an equivalent greenhouse climate model with multiple time delays as a function of the uncertainty degree of the process model to be controlled. An automated tuning technique is proposed for the robustness filter of MIMO-FSP through online estimation of the modeling error. Simulation results show that the proposed technique is able to improve disturbance rejection dynamics while assuring robust stability.

Keywords

Greenhouse Dead-time compensators  MIMO processes  Robustness 

Notes

Acknowledgments

Financial support from the Brazilian funding agencies CAPES and CNPq is gratefully acknowledged.

References

  1. Aguirre, L. A. (2001). Introduç ao à Identificaç ao de Sistemas: Técnicas Lineares e N ao-Lineares Aplicadas a Sistemas Reais (Introduction to System Identification: linear and nonlinear methods applied to real systems). Belo Horizonte: UFMG.Google Scholar
  2. Albright, L. D., Gates, R. S., Arvanitis, K. G., & Drysdale, A. (2001). Environmental control for plants on Earth and in space. IEEE Control System Magazine, 21(5), 28–47.CrossRefGoogle Scholar
  3. Alevisakis, G., & Seborg, D. E. (1973). An extension of the Smith predictor method to multivariable linear systems containing time delays. International Jornal Control, 17(3), 541–551.CrossRefGoogle Scholar
  4. Azaza, M., Echaieb, K., Mami, A., & Iqbal, A. (2014). Optimized micro-climate controller of a greenhouse powered by photovoltaic generator. In: Renewable energy congress (IREC), 2014 5th international, pp. 1–5.Google Scholar
  5. Flesch, R. C. C., Torrico, B. C., Normey-Rico, J. E., & Cavalcante, M. U. (2011). Unified approach for minimal output dead time compensation in MIMO processes. Journal of Process Control, 21(7), 1080–1091.CrossRefGoogle Scholar
  6. Garrido, J., Vázquez, F., Morilla, F., & Normey-Rico, J. E. (2016). Smith predictor with inverted decoupling for square multivariable time delay systems. International Journal of Systems Science, 47(2), 374–388.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Gonçalves, R., & Santos, T.L.M. (2015). Sintonia automatizada do filtro de robustez para o controle de sistemas com atraso (Automated tuning of robustness filter for control systems with delays). In: XII Simpósio Brasileiro de Automaç ao Inteligente (SBAI).Google Scholar
  8. Gurban, E.H., & Andreescu, G. (2012). Comparison study of \(PID\) controller tuning for greenhouse climate with feedback-feedforward linearization and decoupling. In: System Theory, Control and Computing (ICSTCC), 2012, pp. 1-6.Google Scholar
  9. Jerome, N. F., & Ray, W. H. (1986). High performance multivariable control strategies for systems having time delays. AIChE Journal, 32(6), 914–931.CrossRefGoogle Scholar
  10. Landau, I. D., & Zito, G. (2006). Digital control system. Berlin: Springer.Google Scholar
  11. Merle, H. J., & Alan, J. M. (1995). Protected Agriculture: A Global Review. World Bank Technical Paper, 23(15), 157.Google Scholar
  12. Normey-Rico, J. E., & Camacho, E. F. (2007). Control of dead-time processes. London: Springer.zbMATHGoogle Scholar
  13. Normey-Rico, J. E., & Camacho, E. F. (2008). Dead-time compensators: A survey. Control Engineering Practice, 16(4), 407–428.Google Scholar
  14. Normey-Rico, J. E., Sartori, R., Veronesi, M., & Visioli, A. (2014). An automatic tuning methodology for a unified dead-time compensator. Control Engineering Practice, 27, 11–22.CrossRefGoogle Scholar
  15. Ogunnaike, B. A., & Ray, W. H. (1979). Multivariable controller design for linear systems having multiple time delays. AIChE Journal, 25(6), 1043–1060.CrossRefGoogle Scholar
  16. Palmor, Z. J. (1996). Time-delay compensation—Smith predictor and its modifications. In: CRC and IEEE Press, Boca Raton, (pp. 224—237)Google Scholar
  17. Pasgianos, G. D., Arvanitis, K. G., Polycarpou, P., & Sigrimis, N. (2003). A nonlinear feedback technique for greenhouse environmental control. Computers and Electronics in Agriculture, 40, 153–177.CrossRefGoogle Scholar
  18. Santos, T. L. M., Flesch, R. C. C., & Normey-Rico, J. L. (2014). On the filtered Smith predictor for MIMO processes with multiple time delays. Journal of Process Control, 24(4), 383–400.CrossRefGoogle Scholar
  19. Skogestad, S., & Postlethwaite, I. (2001). Multivariable feedback control: Analysis and design. Hoboken: wiley.zbMATHGoogle Scholar
  20. Smith, O. J. M. (1957). Closer control of loops with dead time. Chemical Engineering Progress, 53(5), 217–219.Google Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2016

Authors and Affiliations

  • Sergio A. Castaño Giraldo
    • 1
    Email author
  • Rodolfo C. C. Flesch
    • 1
  • Julio E. Normey-Rico
    • 1
  1. 1.Federal University of Santa Catarina (UFSC)FlorianópolisBrazil

Personalised recommendations