Regenerative Active Electronic Load for Testing Power Transformers Under Linear and Nonlinear Conditions

  • Clodualdo Venicio de  Sousa
  • Guilherme Monteiro de  Rezende
  • Frederico Ferreira Matos
  • Selênio Rocha Silva
  • Victor Flores Mendes
Article

Abstract

A significant number of power apparatus, before being commercialized or during maintenance, are submitted to laboratory tests where real operation conditions are emulated. These tests generally demand high energy consumption which increases the maintenance costs and the overall equipment investment. This paper proposes a platform to test power transformers with return of energy (closed loop) to the system, reducing the power consumption to the inherent equipment losses. Besides the low energy consumption, the proposed system permits flexible tests and operation with variable power factor. The transformer under test can be submitted to different load profiles, including harmonics injection, which is not generally addressed in the traditional procedures. The control structure and constructive characteristics of a 75-kVA test bench are presented and the methodology is validated by testing a 50-kVA distribution transformer. The experimental results are discussed, and the overall system efficiency is demonstrated.

Keywords

Active electronic load Regenerative load Load simulator Back-to-back converter Power transformer Resonant control 

References

  1. ABNT, Brazilian Association of Technical Standards. (2003). NBR-5356, Power Transformers (in Portuguese).Google Scholar
  2. ANEEL - Agência Nacional de Energia Elétrica. (2010). Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional—PRODIST: Módulo 8—Qualidade da Energia Elétrica.Google Scholar
  3. Bierhoff, M. H., & Fuchs, F. W. (2004). Semiconductor losses in voltage source and current source IGBT converters based on analytical derivation. Power Electronics Specialists Conference, PESC, 04(4), 2836–2842.Google Scholar
  4. Blaabjerg, F., Chiarantoni, E., Dell’Aquila, A., Liserre, M., & Vegura, S. (2003). Analysis of the grid side behavior of a LCL-filter based three-phase active rectifier. In 2003 IEEE international symposium on industrial electronics, 2003. ISIE ’03 (Vol. 2, pp. 775–780).Google Scholar
  5. Cupertino, A. F., Mendes, V. F., & Silva, S. R. (2014). Modelagem e Controle de um Simulador de Painéis Fotovoltaicos. Congresso Brasileiro de Automática (CBA). SBA (pp. 593–600).Google Scholar
  6. de Sousa, C.V., Matos, F.F., Mendes, V.F., da Silva Lopes, I.J., Silva, S.R., & Seleme, S.I. (2010). Regenerative PWM source for power transformer loading tests. In 2010 IEEE International Conference on Industrial Technology (ICIT) (pp. 961–966).Google Scholar
  7. Fuchs, E. F., Yildirim, D., & Grady, W. M. (2000). Measurement of eddy-current loss coefficient P\(_{\rm EC-R}\), derating of single-phase transformers, and comparison with K-factor approach. IEEE Transactions on Power Delivery, 15(1), 148–154.CrossRefGoogle Scholar
  8. Guimarães, L. F., Kawahara, L. G., Annunziato, R. C., & Gules, R. (2013). Design and implementation of an electronic load. In Power Electronics Conference (COBEP), 2013 Brazilian (pp. 1075–1081).Google Scholar
  9. Han, B.-M., Bae, B.-Y., & Jeong, Y.-S. (2006). Load simulator with power recovery capability based on voltage source converter–inverter set. IEE Proceedings Electric Power Applications, 153(6), 891–897.CrossRefGoogle Scholar
  10. Heerdt, J. A., Ferreira Coutinho, D., Mussa, S. A., & Lobo Heldwein, M. (2014). Control strategy for current harmonic programmed AC active electronic power loads. IEEE Transactions on Industrial Electronics, 61(8), 3810–3822.CrossRefGoogle Scholar
  11. Hogan, D. J., Gonzalez-Espin, F., Hayes, J. G., Foley, R., Lightbody, G., & Egan, M. G. (2014). Load and source electronic emulation using resonant current control for testing in a microgrid laboratory. In 2014 IEEE 5th international symposium on power electronics for distributed generation systems (PEDG) (pp. 1–7).Google Scholar
  12. IEEE. (1993). Recommended practices and requirements for harmonic control in electrical power systems. In IEEE Std 519-1992.Google Scholar
  13. IEC, International Electrotechnical Commission. (2000). Standard IEC 60076—Power transformers.Google Scholar
  14. Ji-Hwan, K., Seong-Chon, C., Min-Ho, S., Yong-Chae, J., & Chung-Yuen, W. (2013). A high voltage battery simulator using Z-source converter with a wide output voltage range. In 2013 international conference on electrical machines and systems (ICEMS) (pp. 1712–1717).Google Scholar
  15. Klein, R. L., de Paiva, A. F., & Mezaroba, M. (2012). Regenerative AC electronic load with LCL filter. 2012 10th IEEE/IAS international conference on industry applications (INDUSCON) (pp. 1–7).Google Scholar
  16. Li, F., Zou, Y. P., Wang, C. Z., Chen, W., Zhang, Y. C., & Zhang, J. (2008). Research on AC electronic load based on back to back single-phase PWM rectifiers. Twenty-third annual IEEE applied power electronics conference and exposition, 2008. APEC 2008 (pp. 630–634).Google Scholar
  17. Liserre, M., Blaabjerg, F., & Hansen, S. (2001). Design and control of an LCL-filter based three-phase active rectifier. Industry Applications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE (Vol. 1, pp. 299–307).Google Scholar
  18. Liserre, M., Dell’Aquila, A., & Blaabjerg, F. (2002). Stability improvements of an LCL-filter based three-phase active rectifier. 2002 IEEE 33rd annual power electronics specialists conference, 2002. PESC 02 (Vol. 3, pp. 1195–1201).Google Scholar
  19. Liserre, M., Teodorescu, R., & Blaabjerg, F. (2006). Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame. IEEE Transactions on Power Electronics, 21(3), 836–841.CrossRefGoogle Scholar
  20. Marafão, F. P., Brandão, D. I., Gonçalves, F. A. S., & Paredes, H. K. M. (2013). Decoupled reference generator for shunt active filters using the conservative power theory. Journal of Control, Automation and Electrical Systems, 24(4), 522–534.CrossRefGoogle Scholar
  21. McDermid, W., & Lambert, J. (2012). Power transformer testing at Manitoba Hydro’s high voltage test facility. 2012 International conference on high voltage engineering and application (ICHVE) (pp. 92–94).Google Scholar
  22. Mohan, N., Undeland, T. M., & Robbins, W. P. (2009). Power electronics: Converters, applications and design. India: Wiley.Google Scholar
  23. Rezende, G. M., de Sousa, C. V., Matos, F. F., Mendes, V. F., Cortizo, P. C., Boaventura, W. C., et al. (2012). Simulador de Cargas Não-Lineares Regenerativo em Teste de Transformadores De Potência. Anais do XIX Congresso Brasileiro de Automática (pp. 1583–1589) (in Portuguese).Google Scholar
  24. Rodriguez, P., Teodorescu, R., Candela, I., Timbus, A. V., & Blaabjerg, F. (2006). New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions. In 37th IEEE power electronics specialists conference (pp. 1–7).Google Scholar
  25. Roncero-Clemente, C., Milanes-Montero, M. I., Minambres-Marcos, V. M., & Romero-Cadaval, E. (2011). Three-phase regenerative electronic load to test shunt power conditioners. 2011 7th international conference-workshop compatibility and power electronics (CPE) (pp. 178–183).Google Scholar
  26. Suul, J. A., Molinas, M., Norum, L., & Undeland, T. (2008). Tuning of control loops for grid connected voltage source converters. IEEE 2nd international power and energy conference, 2008. PECon 2008 (pp. 797–802).Google Scholar
  27. Teodorescu, R., Blaabjerg, F., Liserre, M., & Dell’Aquila, A. (2003). A stable three-phase LCL-filter based active rectifier without damping. 38th IAS annual meeting industry applications conference, 2003 (Vol. 3, pp. 1552–1557).Google Scholar
  28. Teodorescu, R., Blaabjerg, F., Liserre, M., & Loh, P. C. (2006). Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proceedings-Electric Power Applications, 153(5), 750–762.CrossRefGoogle Scholar
  29. Twining, E., & Holmes, D. G. (2003). Grid current regulation of a three-phase voltage source inverter with an LCL input filter. IEEE Transactions on Power Electronics, 18(3), 888–895.CrossRefGoogle Scholar
  30. Wallace, I. T., Kutkut, N. H., Bhattacharya, S., Divan, D. M., & Novotny, D. W. (1998). Inductor design for high-power applications with broad-spectrum excitation. IEEE Transactions on Power Electronics, 13(1), 202–208.CrossRefGoogle Scholar
  31. Yepes, A. G., Freijedo, F. D., Doval-Gandoy, J., López, O., Malvar, J., & Fernandez-Comesaña, P. (2010). Effects of discretization methods on the performance of resonant controllers. IEEE Transactions on Power Electronics, 25(7), 1692–1712.CrossRefGoogle Scholar
  32. Yepes, A. G., Freijedo, F. D., Lopez, O., & Doval-Gandoy, J. (2011). High-performance digital resonant controllers implemented with two integrators. IEEE Transactions on Power Electronics, 26(2), 563–576.CrossRefGoogle Scholar
  33. Yiyan, H., & Maosong, W. (2004). The transformer short-circuit test and the high power laboratory in China the past, present, and future. , Electrical Insulation Magazine, 20(1), 14–19.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2015

Authors and Affiliations

  • Clodualdo Venicio de  Sousa
    • 1
  • Guilherme Monteiro de  Rezende
    • 1
    • 2
  • Frederico Ferreira Matos
    • 1
    • 2
  • Selênio Rocha Silva
    • 2
  • Victor Flores Mendes
    • 2
  1. 1.Department of Electrical EngineeringFederal University of Itajubá (UNIFEI)ItabiraBrazil
  2. 2.Department of Electrical EngineeringUFMGBelo HorizonteBrazil

Personalised recommendations