3D Robust Online Motion Planning for Steerable Needles in Dynamic Workspaces Using Duty-Cycled Rotation

  • Mariana C. Bernardes
  • Bruno V. Adorno
  • Geovany A. Borges
  • Philippe Poignet
Article

Abstract

This work presents a closed-loop strategy for 3D online motion planning of beveled steerable needles using duty-cycled rotation. The algorithm first selects an entry point that minimizes a multi-criteria cost function and then combines an RRT-based path planner with an intraoperative replanning algorithm and workspace feedback information to constantly update the needle inputs and adjust the trajectory. Simulations in a workspace based on a typical prostate needle steering scenario show that the algorithm is robust against disturbances and model uncertainties and can provide online trajectories to avoid obstacles even under the presence of physiological motion.

Keywords

Medical robotics Needle steering Motion planning 

Supplementary material

Supplementary material 1 (mpg 39330 KB)

References

  1. Abolhassani, N., Patel, R., & Moallem, M. (2007). Needle insertion into soft tissue: A survey. Medical Engineering and Physics, 29, 413–431.Google Scholar
  2. Alterovitz, R., & Goldberg, K. (June 2007). The stochastic motion roadmap: A sampling framework for planning with markov motion uncertainty. In Proceedings of the Robotics: Science and Systems Conference, Atlanta, GA, pp. 1–8.Google Scholar
  3. Alterovitz, R., Branicky, M., & Goldberg, K. (2008). Motion planning under uncertainty for image-guided medical needle steering. The International Journal of Robotics Research, 2(11–12), 1361–1374.Google Scholar
  4. Alterovitz, R., Goldberg, K., & Okamura, A. (2005). Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1640–1645.Google Scholar
  5. Bernardes, M. C., Adorno, B. V., Poignet, P., & Borges, G. A. (2012). Semi-automatic needle steering system with robotic manipulator. In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1595–1600.Google Scholar
  6. Bernardes, M. C., Adorno, B. V., Poignet, P., Zemiti, N., & Borges, G. A. (2011). Adaptive path planning for steerable needles using duty-cycling. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2545–2550.Google Scholar
  7. Duindam, V., Alterovitz, R., Sastry, S., & Goldberg, K. (2010). Three-dimensional motion planning algorithms for steerable needles using inverse kinematics. The International Journal of Robotics Research, 29(7), 789–800.Google Scholar
  8. Fichtinger, G., Kazanzides, P., Okamura, A. M., Hager, G. D., Whitcomb, L. L., & Taylor, R. H. (2008). Surgical and Interventional Robotics: Part II. In IEEE Robotics and Automation Magazine, pp. 94–102.Google Scholar
  9. Hauser, K., Alterovitz, R., Chentanez, N., Okamura, A., & Goldberg, K. (June 2009). Feedback control for steering needles through 3D deformable tissue using helical paths. In Proceedings of the Robotics: Science and Systems Conference, Seattle, WA, pp. 1–8.Google Scholar
  10. Kuffner, J. J., & LaValle, S. M. (2000). RRT-connect: An efficient approach to single-query path planning. In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 995–1001.Google Scholar
  11. LaValle, S. M., & Kuffner, J. J. (1999). Randomized kinodynamic planning. In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 473–479.Google Scholar
  12. Lobaton, E., Zhang, J., Patil, S., & Alterovitz, R. (2011). Planning curvature-constrained paths to multiple goals using circle Sampling. In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1463–1469.Google Scholar
  13. Minhas, D., Engh, J., Fenske, M., & Riviere, C. (2007). Modeling of needle steering via duty-cycled spinning. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2756–2759.Google Scholar
  14. Mittal, S., & Deb, K. (2007). Three-dimensional offline path planning for UAVs using multiobjective evolutionary algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation, pp. 3195–3202.Google Scholar
  15. Park, W., Kim, J., Zhou, Y., Cowan, N. J., Okamura, A., & Chirikjian, G. (2005). Diffusion-based motion planning for a nonholonomic flexible needle model. In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4611–4616.Google Scholar
  16. Patil, S., & Alterovitz, R. (2010). Interactive motion planning for steerable needles in 3D environments with obstacles. In Proceedings of the IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 893–899.Google Scholar
  17. Patil, S., van den Berg, J. P., & Alterovitz, R. (2011). Motion planning under uncertainty in highly deformable environments. In Proceedings  of the Robotics: Science and Systems Conference.Google Scholar
  18. van den Berg, J. P., Patil, S., & Alterovitz, R. (2010). LQG-based planning, sensing, and control of steerable needles. In Proceedings of the International Workshop on the Algorithmic Foundations of Robotics, pp. 373–389.Google Scholar
  19. Vancamberg, L., Sahbani, A., Muller, S., & Morel, G. (2010). Needle path planning for digital breast tomosynthesis biopsy. In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2062–2067.Google Scholar
  20. Vancamberg, L., Sahbani, A., Muller, S., & Morel, G. (2011). Needle path planning for digital breast tomosynthesis biopsy using a heterogeneous model. In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 5749–5755.Google Scholar
  21. Webster III, R. J., Kim, J., Cowan N. J., Chirikjian, G., & Okamura, A. (2006). Nonholonomic modeling of needle steering. The International Journal of Robotics Research, 25(5–6), 509–525.Google Scholar
  22. Xu, J., Duindam, V., Alterovitz, R., & Goldberg, K. (2008). Motion planning for steerable needles in 3D environments with obstacles using rapidly-exploring Random Trees and backchaining. In Proceedings of the IEEE International Conference on Automation Science and Engineering, pp. 41–46.Google Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2014

Authors and Affiliations

  • Mariana C. Bernardes
    • 1
  • Bruno V. Adorno
    • 2
  • Geovany A. Borges
    • 1
  • Philippe Poignet
    • 3
  1. 1.Universidade de Brasília, LARABrasíliaBrazil
  2. 2.Universidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Université Montpellier 2, LIRMM MontpellierFrance

Personalised recommendations