On the Coordination of Constrained Fixed-Wing Unmanned Aerial Vehicles

  • Tales Argolo Jesus
  • Luciano Cunha de Araújo Pimenta
  • Leonardo Antônio Borges Tôrres
  • Eduardo Mazoni Andrade Marçal Mendes
Article

Abstract

A formal distributed control methodology to coordinate a team of fixed-wing UAVs (Unmanned Aerial Vehicles) in a three-dimensional workspace is addressed. The complete task to be accomplished is divided in three stages: (i) each UAV tracks a circle parallel to the \(xy\) plane in a given altitude (different altitudes for different UAVs); (ii) the UAVs distribute themselves in such a way that their projection onto the \(xy\) plane are evenly spaced around a circle; (iii) each UAV converges to the same altitude to track the same circle. The main contribution of this work lies in the mathematical proofs of the proposed strategy for a given UAV model. We consider minimum and maximum limits in the forward speed command, maximum limit in the absolute value of the yaw rate, maximum limit in the absolute value of the altitude speed, second-order dynamics, and a non-holonomic constraint. Stability and collision avoidance are guaranteed during the whole task including the stage transitions and without violating the constraints. Simulation results are given to illustrate the proposed approach.

Keywords

Coordinated control of multi-agent systems Distributed coordination Unmanned aerial vehicles 

References

  1. Aguiar, A. P., Hespanha, J. P., & Kokotavić, P. (2008). Performance limitations in reference-tracking and path-following for nonlinear systems. Automatica, 44, 598–610.CrossRefGoogle Scholar
  2. Aicardi, M., Casalino, G., Bicchi, A., & Balestrino, A. (1995). Closed loop steering of unicycle-like vehicles via Lyapunov techniques. IEEE Robotics & Automation Magazine, 2(1), 27–35.CrossRefGoogle Scholar
  3. Ajorlou, A., Momeni, A. & Aghdam, A. G. (2011). A connectivity preserving containment control strategy for a network of single integrator agents. In Proceedings of the American Control Conference (pp. 499–501).Google Scholar
  4. Bayraktar, S., Fainekos, J. E. & Pappas, G. J. (2004). Experimental cooperative control of fixed-wing unmanned aerial vehicles. In Proceedings of the 43rd IEEE Conference on Decision and Control (pp. 4292–4298).Google Scholar
  5. Bó, A. P. L. & Borges, G. A. (2007). Denvolvimento de um sistema de localização 3D para aplicação em robôs aéreos. In V Simpósio Brasileiro de Engenharia Inercial (SBEIN 2007) (pp. 1–6).Google Scholar
  6. Bussamra, F. L. S., Vilchez, C. M. M., & Santos, J. C. (2009). Experimental determination of unmanned aircraft inertial properties. In Brazilian Symposium on Aerospace Engineering and Applications.Google Scholar
  7. Carlési, N., Michel, F., Jouvencel, B. & Ferber, J. (2011). Generic architecture for multi-AUV cooperation based on a multi-agent reactive organizational approach. In Proceedings of the International Conference on Intelligent Robots and Systems (pp. 5041–5047).Google Scholar
  8. Casbeer, D. W., Kingston, D. B., Beard, R. W., McLain, T. W., Li, S.-M., & Mehra, R. (2006). Cooperative forest fire surveillance using a team of small unmanned air vehicles. International Journal of Systems Science, 37(6), 351–360.MATHCrossRefGoogle Scholar
  9. Ceccarelli, N., Marco, M. D., Garulli, A., & Giannitrapani, A. (2008). Collective circular motion of multi-vehicle systems. Automatica, 40, 3025–3035.CrossRefGoogle Scholar
  10. Cheah, C. C., Hou, S. P., & Slotine, J. J. E. (2009). Region-based shape control for a swarm of robots. Automatica, 45, 2406–2411.MathSciNetMATHCrossRefGoogle Scholar
  11. Costa, F. G., Ueyama, J., Braun, T., Pessin, G., Osório, F. S., & Vargas, P. A. (2012). The use of unmanned aerial vehicles and wireless sensor network in agricultural applications. In IEEE International Geoscience and Remote Sensing Symposium.Google Scholar
  12. Dimarogonas, D. V., & Kyriakopoulos, K. J. (2008). Connectedness preserving distributed swarm aggregation for multiple kinematic robots. IEEE Transactions on Robotics, 24(5), 1213–1223.CrossRefGoogle Scholar
  13. Ding, X. C., Rahmani, A. R., & Egerstedt, M. (2010). Multi-UAV convoy protection: An optimal approach to path planning and coordination. IEEE Transactions on Robotics, 26, 256–268.CrossRefGoogle Scholar
  14. Franchi, A., Stegagno, P., Rocco, M. D., & Oriolo, G. (2010). Distributed target localization and encircling with a multi-robot system. In Proceedings of the IFAC Symposium on Intelligent Autonomous Vehicles.Google Scholar
  15. Frew, E. W. & Lawrence, D. (2012). Tracking expanding star curves using guidance vector fields. In Proceedings of the American Control Conference (pp. 1749–1754).Google Scholar
  16. Galloway, K. S., Justh, E. W. & Krishnaprasad, P. S. (2010). Cyclic pursuit in three dimensions. In Proceedings of the 49th IEEE Conference on Decision and Control (pp. 7141–7146).Google Scholar
  17. Gan, S. K. & Sukkarieh, S. (2011). Multi-UAV target search using explicit decentralized gradient-based negotiation. In Proceedings of the IEEE International Conference on Robotics and Automation (pp. 751–756).Google Scholar
  18. Gonçalves, M. M., Pimenta, L. C. A., & Pereira, G. A. S. (2011). Coverage of curves in 3D with swarms of nonholonomic aerial robots. Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC). (Vol. 18, pp. 10367–10372).Google Scholar
  19. Gonçalves, V. M., Pimenta, L. C. A., Maia, C. A., Dutra, B. C. O., & Pereira, G. A. S. (2010). Vector fields for robot navigation along time-varying curves in n-dimensions. IEEE Transactions on Robotics, 26(4), 647–659.CrossRefGoogle Scholar
  20. Hara, S., Kim, T.-H. & Sugie, T. (2008). Distribution formation control for target-enclosing operations based on a cyclic pursuit strategy. In Proceedings of the 17th World Congress of the International Federation of Automatic Control (IFAC) (pp. 6602–6607).Google Scholar
  21. Hsieh, M. A., Kumar, V., & Chaimowicz, L. (2008). Decentralized controllers for shape generation with robotic systems. Robotica, 26, 691–701.CrossRefGoogle Scholar
  22. Hsieh, M. A., Loizou, S. & Kumar, R. V. (2007). Stabilization of multiple robots on stable orbits via local sensing. In Proceedings of the IEEE International Conference on Robotics and Automation (pp. 2312–2317).Google Scholar
  23. Iscold, P., Pereira, G. A. S., & Tôrres, L. A. B. (2010). Development of a hand-launched small UAV for ground reconnaissance. IEEE Transactions on Aerospace and Electronic Systems, 46, 335–348. Google Scholar
  24. Jesus, T. A., Pimenta, L. C. A., Tôrres, L. A. B. & Mendes, E. M. A. M. (2012). A vector field approach for controlling a fixed-wing aerial robot with constraints in the inputs and in the state variables. In XIX Congresso Brasileiro de Automática (CBA 2012). Campina Grande, PB.Google Scholar
  25. Kim, T.-H., & Sugie, T. (2007). Cooperative control for target-capturing task based on a cyclic pursuit strategy. Automatica, 43(3), 1426–1431.MathSciNetMATHCrossRefGoogle Scholar
  26. Krontiris, A. & Bekris, K. E. (2011). Using minimal communication to improve decentralized conflict for non-holonomic vehicles. In Proceedings of the International Conference on Intelligent Robots and Systems (pp. 3235–3240).Google Scholar
  27. Loizou, S. G., & Kyriakopoulos, K. J. (2008). Navigation of multiple kinematically constrained robots. IEEE Transactions on Robotics, 24(1), 221–231.CrossRefGoogle Scholar
  28. Marshall, J. A., Broucke, M. E., & Francis, B. A. (2004). Formations of vehicles in cyclic pursuit. IEEE Transactions on Automatic Control, 49, 1963–1974.MathSciNetCrossRefGoogle Scholar
  29. Martins, A. S., Bó, A. P. L., Borges, G. A. & Ishihara, J. Y. (2007). Design and experimental evaluation of rotor speed regulators for model helicopters in a test bench. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1600–1605).Google Scholar
  30. Michael, N., & Kumar, V. (2008). Controlling shapes of ensembles of robots of finite size with nonholonomic constraints. In Proceedings of the Robotics, Science and Systems, Zurich, Switzerland.Google Scholar
  31. Ramirez, J. L., Pavone, M., Frazolli, E. & Miller, D. W. (2009). Distributed control of spacecraft formation via cyclic pursuit: Theory and experiments. In Proceedings of the American Control Conference (pp. 4811–4817).Google Scholar
  32. Ren, W. (2007). On constrained nonlinear tracking control of a small fixed-wing UAV. Journal of Intelligent and Robotic Systems, 48, 525–537.CrossRefGoogle Scholar
  33. Sabattini, L., Chopra, N. & Secchi, C. (2011). Distributed control of multi-robot systems with global connectivity maintenance. In Proceedings of the International Conference on Intelligent Robots and Systems (pp. 2321–2326).Google Scholar
  34. Saska, M., Vonasek, V. & Preucil, L. (2011). Roads sweeping by unmanned multi-vehicle formations. In Proceedings of the IEEE International Conference on Robotics and Automation (pp. 631–636).Google Scholar
  35. Slotine, J.-J. E., & Li, W. (1991). Applied nonlinear control. Englewood Cliffs, NJ: Prentice Hall.MATHGoogle Scholar
  36. Thums, G. D. (2012). Sintonia PID robusta multi-malha para veículos aéreos não tripulados. Master’s thesis, Programa de Pós-Graduação em Engenharia Elétrica (PPGEE), Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG).Google Scholar
  37. Thums, G. D., Tôrres, L. A. B. & Palhares, R. M. (2012). Metodologia de sintonia PID multi-malha para veículos aéreos não tripulados: Dinâmica longitudinal. In XIX Congresso Brasileiro de Automática (CBA 2012). Campina Grande, PB.Google Scholar
  38. Zhang, H., Pothuvila, K., Hui, Q., Yang, R. & Berg, J. M. (2011). Control of synchronization for multi-agent systems in acceleration motion with additional analysis of formation control. In Proceedings of the American Control Conference (pp. 509–514).Google Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2013

Authors and Affiliations

  • Tales Argolo Jesus
    • 1
  • Luciano Cunha de Araújo Pimenta
    • 2
  • Leonardo Antônio Borges Tôrres
    • 2
  • Eduardo Mazoni Andrade Marçal Mendes
    • 2
  1. 1.Laboratório de Modelagem, Análise e Controle de Sistemas Não Lineares (MACSIN), Escola de Engenharia daUniversidade Federal de Minas GeraisBelo Horizonte-MGBrazil
  2. 2.Departamento de Engenharia EletrônicaEscola de Engenharia da Universidade Federal de Minas GeraisBelo Horizonte-MGBrazil

Personalised recommendations