LMI-Based Multi-model Predictive Control of an Industrial C3/C4 Splitter



In this paper, the robust Model Predictive Control (MPC) of systems with model uncertainty is addressed. The robust approach usually involves the inclusion of nonlinear constraints to the optimization problem upon which the controller is based. At each time step the sequence of control actions is then calculated through the resolution of a NonLinear Programming problem, which can be too computer demanding for high dimension systems. Here, the conventional Multi-model Predictive Control (MMPC) problem is re-casted as an LMI-based problem that can be solved with a lower computational cost. The conventional and LMI-based robust controllers’ performances and computational costs are compared through simulations of the control of an industrial C3/C4 splitter.


Model predictive control Linear matrix inequality Multi-model uncertainty Robust control 


  1. Alamo, T., Muñoz de la Peña, D., & Camacho, E. F. (2008). Min–max MPC based on a network problem. Systems & Control Letters, 57(2), 184–192.MathSciNetMATHCrossRefGoogle Scholar
  2. Cuzzola, A. F., Geromel, C. J., & Morari, M. (2002). An improved approach for constrained robust model predictive control. Automatica, 38(7), 1183–1189.MathSciNetMATHCrossRefGoogle Scholar
  3. Cychowski, M. T., & O’Mahony, T. (2010). Feedback min–max model predictive control using robust one-step sets. International Journal of Systems Science, 41(7), 813–823.MathSciNetMATHCrossRefGoogle Scholar
  4. Ding, B. (2010). Constrained robust model predictive control via parameter-dependent dynamic output feedback. Automatica, 46(9), 1517–1523.MathSciNetMATHCrossRefGoogle Scholar
  5. Falugi, P., Olaru, S., & Dumur, D. (2010a). Multi-model predictive control based on LMI: From the adaptation of the state-space model to the analytic description of the control law. International Journal of Control, 83(8), 1548–1563.MathSciNetMATHCrossRefGoogle Scholar
  6. Falugi, P., Olaru, S., & Dumur, D. (2010b). Robust multi-model predictive control using LMIs. International Journal of Control, Automation and Systems, 8(1), 169–175. Google Scholar
  7. Gahinet, P., Nemirovski, A., Laub, A. J., & Chilali, M. (1995). LMI Control Toolbox User’s Guide. Natick, MA: The Math Works Inc.Google Scholar
  8. González, A. H., & Odloak, D. (2011). Robust model predictive control for time delayed systems with optimizing targets and zone control, robust control. In A. Bartoszewicz (Ed.), Robust control, theory and applications (pp. 339–370). Viena: Intech.Google Scholar
  9. Kothare, M. V., Balakrishnan, V., & Morari, M. (1996). Robust constrained model predictive control using linear matrix inequalities. Automatica, 32(10), 1361–1379.MathSciNetMATHCrossRefGoogle Scholar
  10. Lee, H., & Bequette, B. W. (2009). A closed-loop artificial pancreas based on model predictive control: Human-friendly identification and automatic meal disturbance rejection. Biomedical Signal Processing and Control, 4(4), 347–354.CrossRefGoogle Scholar
  11. Li, D., & Xi, Y. (2010). The feedback robust MPC for LPV systems with bounded rates of parameter changes. IEEE Transactions on Automatic Control, 55(2), 503–507.MathSciNetCrossRefGoogle Scholar
  12. Maciejowski, J. M. (2002). Model predictive control with constraints. New Jersey, NY: Prentice Hall.Google Scholar
  13. Odloak, D. (2004). Extended robust model predictive control. AIChE Journal, 50(8), 1824–1836.CrossRefGoogle Scholar
  14. Porfírio, C. R., Almeida Neto, E., & Odloak, D. (2003). Multi-model predictive control of an industrial C3/C4 splitter. Control Engineering Practice, 11(7), 765–779.CrossRefGoogle Scholar
  15. Qin, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control technology. Control Engineering Practice, 11(7), 733–764.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of São PauloSão PauloBrazil

Personalised recommendations