Decoupled Reference Generator for Shunt Active Filters Using the Conservative Power Theory

  • Fernando Pinhabel Marafão
  • Danilo I. Brandão
  • Flávio A. Serrão Gonçalves
  • Helmo Kelis Morales Paredes


Based on the framework of the Conservative Power Theory (CPT), this paper proposes some compensation strategies for shunt current compensators. CPT current decompositions result in several current-related terms associated with specific load characteristics, such as power consumption, energy storage, unbalances and load nonlinearities. These current components are decoupled (orthogonal) from each other and are used here to define different compensation strategies, which can be selective in minimizing particular effects of disturbing loads. Compensation strategies for single- and three-phase four-wire circuits are also considered. Simulated and experimental results are described to validate the possibilities and performance of the proposed strategies.


Active power filters Compensation strategies Harmonics Reactive compensation Selective compensation  Unbalance compensation 



The authors acknowledge the financial support of the Brazilian research funding agencies FAPESP (São Paulo Research Foundation) and CNPq (National Council for Scientific and Technological Development).


  1. Akagi, H., & Nabae, A. (1986). Control strategy of active power filters using multiple voltage source PWM converters. IEEE Transactions on Industrial Application, IA–22(3), 460–465.CrossRefGoogle Scholar
  2. Akagi, H. (1997). Control strategy and site selection of a shunt active filter for damping of harmonic propagation in power distribution systems. IEEE Transactions on Power Delivery, 12(1), 354–363.CrossRefGoogle Scholar
  3. Aredes, M., Häfner, J., & Heumann, K. (1997). Three-phase four-wire shunt active filter control strategies. IEEE Transactions on Power Electronics, 12(2), 311–318.CrossRefGoogle Scholar
  4. Buso, S., Malesani, L., & Mattavelli, P. (1998). Comparison of current control techniques for active filter applications. IEEE Transactions on Industrial Electronics, 45(5), 722–729.CrossRefGoogle Scholar
  5. Buso, S., & Mattavelli, P. (2006). Digital control in power electronics, 1st ed., Morgan & Claypoo, United States of America.Google Scholar
  6. Cavallini, A., & Montanari, G. C. (1994). Compensation strategies for shunt active-filter control. IEEE Transactions on Power Electronics, 9(6), 587–593.CrossRefGoogle Scholar
  7. Chaves, F. S., & Vale, M. H. M. (2009). Power system reactive compensation: evaluation of expansion plans taking into account electromagnetic transient restrictions. Controle & Automação, 20(1), 63–71.Google Scholar
  8. Karuppanan P, Mahapatra, K. K., Jeyaraman K., & Viji, J. (2011). Fryze power theory with adaptive-HCC based active power line conditioners, In: International conference on power and energy systems (ICPS), pp. 1–6.Google Scholar
  9. Marafão, F. P., Deckmann, S. M., Pomilio, J. A., & Machado, R. Q. (2002). Selective disturbing compensation and comparisons of active filtering strategies. IEEE International Conference on Harmonics and Quality of Power, Rio de Janeiro, Brazil, 2, 484–489.Google Scholar
  10. Merçon, A. G., Encarnação, L. F., Monteiro, L. F., Emmerick, E. L., & Aredes, M. (2008). A comparative analysis of cascaded-multilevel hybrid filters applied in power transmission systems. Controle & Automação, 19(1), 107–113.CrossRefGoogle Scholar
  11. Paredes, H. K. M. (2011). Teoria de potência conservativa: uma nova abordagem para o controle cooperativo de condicionadores de energia e considerações sobre atribuição de responsabilidades. Tese de Doutorado: Universidade Estadual de Campinas, Brazil.Google Scholar
  12. Paredes, H. K. M., Silva, L. C. P., Brandão, D. I., & Marafão, F. P. (2011). Possible shunt compensation strategies based on conservative power theory. Przeglad Elektrotechniczny, 87(1), 34–39.Google Scholar
  13. Peng, F. Z., Akagi, H., & Nabae, A. (1990). A new approach to harmonic compensation in power systems: A combined system of shunt passive and series active filters. IEEE Transactions on Industry Applications, 26(6), 983–990.CrossRefGoogle Scholar
  14. Peng, F. Z. (1998). Application issues of active power filters. IEEE Industry Applications Magazine, 4(5), 21–30.CrossRefGoogle Scholar
  15. Penello, L. F., & Watanabe, E. H. (1993). Filtro ativo de potência tipo “shunt” com seleção da potência a ser compensada. Controle & Automação, 04(1), 31–37.Google Scholar
  16. Penfield, P., Spence, R., & Duinker, S. (1970). Tellegen’s Theorem and Electrical Networks. Massachusetts, Cambridge: MIT Press.Google Scholar
  17. Silva, S. A. O., Donoso-Garcia, P. F., Cortizo, P. C., & Seixas, P. F. (2005). A line-interactive UPS system implementation with series-parallel active power-line conditioning for three-phase, four-wire systems. Controle & Automação, 16(2), 200–210. Google Scholar
  18. Tedeschi, E., & Tenti, P. (2008). Cooperative design and control of distributed harmonic and reactive compensators. Przeglad Elektrotechniczny, 84(6), 23–27.Google Scholar
  19. Tedeschi, E., Tenti, P., Mattavelli, P., & Trombetti, D. (2009). Cooperative control of electronic power processors in micro-grids (pp. 1–8). Bonito, Brazil: Brazilian Power Electronics Conference.Google Scholar
  20. Tenti, P., & Mattavelli, P. (2003). A time-domain approach to power term definitions under Non-sinusoidal conditions. Milano, Italy: International Workshop on Power Definitions and Measurements under Non-Sinusoidal Conditions.Google Scholar
  21. Tenti, P., Mattavelli, P., & Paredes, H. K. M. (2010). Conservative power theory. Sequence Components and Accountability in Smart Grids, Przeglad Elektrotchniczny, 86(6), 30–37.Google Scholar
  22. Tenti, P., Paredes, H. K. M., Marafão, F. P., & Mattavelli, P. (2011). Accountability in smart microgrids based on conservative power theory. IEEE Transactions on Instrumentation and Measurement, 60(9), 3058–3069.CrossRefGoogle Scholar
  23. Ucar, M., Ozdemir, S., & Ozdemir, E. (2010). A combined series-parallel active filter system implementation using generalized non-active power theory (pp. 367–373), Applied Power Electronics Conference and Exposition (APEC).Google Scholar
  24. Watanabe, E. H., Aredes, M., & Akagi, H. (2004). The p-q theory for active filter control: some problems and solutions. Controle & Automação, 15(1), 78–84.CrossRefGoogle Scholar
  25. Zuñiga, T. E. N., & Pomilio, J. A. (2002). Shunt Active Power Filter Synthesizing Resistive Load. IEEE Transactions on Power Electronics, 17(2), 273–278.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2013

Authors and Affiliations

  • Fernando Pinhabel Marafão
    • 1
  • Danilo I. Brandão
    • 1
  • Flávio A. Serrão Gonçalves
    • 1
  • Helmo Kelis Morales Paredes
    • 1
  1. 1.Group of Automation and Integrated Systems UNESP—Universidade Estadual PaulistaSorocabaBrazil

Personalised recommendations