On the Homeomorphism Type of Smooth Projective Fourfolds

  • Keiji Oguiso
  • Thomas PeternellEmail author


In this paper, we study smooth complex projective 4-folds which are topologically equivalent. First we show that Fano fourfolds are never oriented homeomorphic to Ricci-flat projective fourfolds and that Calabi-Yau manifolds and hyperkähler manifolds in dimension ≥ 4 are never oriented homeomorphic. Finally, we give a coarse classification of smooth projective fourfolds which are oriented homeomorphic to a hyperkähler fourfold which is deformation equivalent to the Hilbert scheme S[2] of two points of a projective K3 surface S.


Homeomorphism type Smooth projective fourfolds Fano fourfolds Calabi-Yau manifold 

Mathematics Subject Classification (2010)

14F45 14J35 14J32 14J45 14J40 



Most thanks of the first named author go to Fabrizio Catanese for his invitation to Universität Bayreuth with full financial support from the ERC 2013 Advanced Research Grant-340258-TADMICAMT. The main part of this work started there. Very special thanks go to Frédéric Campana whose comments and remarks greatly helped to improve the paper. In particular, this concerns Theorems 3.1 and 1.5. We would like to express our thanks to Fabrizio Catanese, Yujiro Kawamata, Yongnam Lee, Bong Lian, and Kiwamu Watanabe for fruitful discussions. Last but not least, we thank the referee for his very valuable comments.

Funding Information

The first named author is supported by the ERC 2013 Advanced Research Grant-340258-TADMICAMT, JSPS Grant-in-Aid (S) No. 25220701, JSPS Grant-in-Aid (S) 15H05738, JSPS Grant-in-Aid (B) 15H03611, and KIAS Scholar Program.


  1. 1.
    Ando, T.: On extremal rays of the higher-dimensional varieties. Invent. Math. 81, 347–357 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andreatta, M., Wisniewski, J.A.: On contractions of smooth varieties. J. Algebraic Geom. 7, 253–312 (1998)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces. In: Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 3 Folge. 2nd edn., vol. 4. Springer, Berlin (2004)Google Scholar
  4. 4.
    Beauville, A.: Variétés Kähleriennes dont la premiére classe de Chern est nulle. J. Differential Geom. 18(1983), 755–782 (1984)zbMATHGoogle Scholar
  5. 5.
    Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension 4. C. R. Acad. Sci. Paris Sér. I Math. 301, 703–706 (1985)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brieskorn, E.: Ein Satz über die komplexen Quadriken. (German). Math. Ann. 155, 184–193 (1964)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Catanese, F.: Deformation in the large of some complex manifolds. I. Ann. Mat. Pura Appl. 183, 261–289 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Catanese, F.: Topological methods in moduli theory. Bull. Math. Sci. 5, 287–449 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Catanese, F., LeBrun, C.: On the scalar curvature of Einstein manifolds. Math. Res. Lett. 4, 843–854 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Campana, F., Peternell, T.: Rigidity theorems for primitive Fano 3-folds. Comm. Anal. Geom. 2(2), 173–201 (1994)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fogarty, J.: Algebraic families on an algebraic surface. Am. J. Math. 90, 511–521 (1968)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Friedman, R., Morgan, J.W.: Smooth Four-Manifolds and Complex Surfaces. Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 27. Springer, Berlin (1996)Google Scholar
  13. 13.
    Freedman, M.H.: The topology of four-dimensional manifolds. J. Differential Geom. 17, 357–453 (1982)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fujiki, A.: On Primitively Symplectic Compact Kähler V -Manifolds of Dimension Four. Classification of Algebraic and Analytic Manifolds (Katata, 1982), 71–250. Progr. Math., vol. 39. MA, Birkhäuser Boston, Boston (1983)Google Scholar
  15. 15.
    Fujiki, A.: On the De Rham cohomology Group of a Compact Kähler Symplectic Manifold. Algebraic Geometry, Sendai, 1985, 105–165, Adv. Stud Pure Math., vol. 10. North-Holland, Amsterdam (1987)Google Scholar
  16. 16.
    Fujita, T.: Classification Theories of Polarized Varieties London Mathematical Society Lecture Note Series, vol. 155. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  17. 17.
    Gross, M., Huybrechts, D., Joyce, D.: Calabi-Yau Manifolds and Related Geometries. Lectures from the Summer School Held in Nordfjordeid June, vol. 2001. Universitext. Springer, Berlin (2003)zbMATHGoogle Scholar
  18. 18.
    Guan, D.: On the Betti numbers of irreducible compact hyperkahler manifolds of complex dimension four. Math. Res. Lett. 8, 663–669 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hirzebruch, F., Kodaira, K.: On the complex projective spaces. J. Math. Pures Appl. 36, 201–216 (1957)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Kawamata, Y.: The cone of curves of algebraic varieties. Ann. of Math. 119, 603–633 (1984)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79, 567–588 (1985)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kawamata, Y.: Small contractions of four-dimensional algebraic manifolds. Math. Ann. 284, 595– 600 (1989)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the Minimal Model Problem. Algebraic Geometry, Sendai, 1985, 283–360, Adv. Stud Pure Math., vol. 10. North-Holland, Amsterdam (1987)Google Scholar
  24. 24.
    Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13, 31–47 (1973)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kodaira, K.: On the structure of compact complex analytic surfaces. I. Am. J. Math. 86, 751–798 (1964)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kodaira, K.: On homotopy K3 surfaces. Essays on Topology and Related Topics (mémoires dédiés á Georges de Rham) 58–69 Springer New York (1970)Google Scholar
  27. 27.
    Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. With the Collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese Original Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  28. 28.
    Kollár, J.: Flips, flops, minimal models, etc. Surveys in differential geometry (Cambridge, MA, 1990), 113–199, Lehigh Univ., Bethlehem PA (1991)Google Scholar
  29. 29.
    Kollár, J.: Rational Curves on Algebraic Varieties. Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics, vol. 32. Springer, Berlin (1996)Google Scholar
  30. 30.
    Kuznetsov, A.: Derived Categories of Cubic Fourfolds. Cohomological and Geometric Approaches to Rationality Problems, 219–243, Progr. Math., vol. 282. Birkhäuser Boston, Inc, Boston, MA (2010)Google Scholar
  31. 31.
    Libgober, A., Wood, J.W.: Uniqueness of the complex structure on kähler manifolds of certain homotopy types. J. Differential Geom. 32, 139–154 (1990)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Ann. Math. Studies 76, Princeton University Press, Princeton, N. J. University of Tokyo Press, Tokyo (1974)Google Scholar
  33. 33.
    Miyaoka, Y.: The Chern Classes and Kodaira Dimension of a Minimal Variety. Algebraic Geometry, Sendai, 1985, 449–476, Adv. Stud Pure Math., vol. 10. North-Holland, Amsterdam (1987)Google Scholar
  34. 34.
    Nakamura, I.: Moishezon threefolds homeomorphic to a cubic hypersurface in \(\mathbb {P}^{4}\). J. Algebraic Geom. 5, 537–569 (1996)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Novikov, S.P.: Topological invariance of rational classes of Pontrjagin. Dokl. Akad. Nauk SSSR 163, 298–300 (1965)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Prokhorov, Y., Zaidenberg, M.: Examples of cylindrical Fano fourfolds. Eur. J. Math. 2, 262–282 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Rasdeaconu, R.: The Kodaira dimension of diffeomorphic kähler threefolds. Proc. Am. Math. Soc. 134, 3543–3553 (2006)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Takagi, H.: Classification of extremal contractions from smooth fourfolds of (3,1)-type. Proc. Am. Math. Soc. 127, 315–321 (1999)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Verbitsky, M.: Cohomology of compact hyper-kähler manifolds and its applications. Geom. Funct. Anal. 6, 601–611 (1996)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Voisin, C.: Théorème de Torelli pour les cubiques de \(\mathbb {P}^{5}\). Invent. Math. 86, 577–601 (1986)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Voisin, C.: Hodge Theory and Complex Algebraic Geometry. I. Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, Cambridge (2002)Google Scholar
  42. 42.
    Yau, S.-T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. U.S.A. 74, 1798–1799 (1977)MathSciNetCrossRefGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Mathematical Sciencesthe University of TokyoTokyoJapan
  2. 2.Korea Institute for Advanced StudySeoulSouth Korea
  3. 3.Mathematisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations