Advertisement

Relative Functoriality and Functional Equations via Trace Formulas

  • Yiannis SakellaridisEmail author
Article
  • 18 Downloads

Abstract

Langlands’ functoriality principle predicts deep relations between the local and automorphic spectra of different reductive groups. This has been generalized by the relative Langlands program to include spherical varieties, among which reductive groups are special cases. In the philosophy of Langlands’ “beyond endoscopy” program, these relations should be expressed as comparisons between different trace formulas, with the insertion of appropriate L-functions. The insertion of L-functions calls for one more goal to be achieved: the study of their functional equations via trace formulas.

The goal of this article is to demonstrate this program through examples, indicating a local-to-global approach as in the project of endoscopy. Here, scalar transfer factors are replaced by “transfer operators” or “Hankel transforms” which are nice enough (typically, expressible in terms of usual Fourier transforms) that they can be used, in principle, to prove global comparisons (in the form of Poisson summation formulas). Some of these examples have already appeared in the literature; for others, the proofs will appear elsewhere.

Keywords

Trace formula Langlands program Beyond endoscopy 

Mathematics Subject Classification (2010)

11F70 

Notes

Acknowledgements

Most of the calculations in this paper were performed while visiting the University of Chicago during the winter and spring quarters of 2017. I am grateful to Ngô Bao Châu for the invitation, and for numerous conversations and references, which made this paper possible. His ideas permeate the paper. The paper was finished during my stay at the Institute for Advanced Study in the Fall of 2017.

Funding Information

This work was supported by the NSF grant DMS-1502270 and by a stipend to the IAS from the Charles Simonyi Endowment.

References

  1. 1.
    Altuğ, S.A.: Beyond endoscopy via the trace formula: 1. Poisson summation and isolation of special representations. Compos. Math. 151(10), 1791–1820 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arthur, J.: Unipotent automorphic representations: conjectures. Astérisque 171–172, 13–71 (1989)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arthur, J.: The endoscopic classification of representations american mathematical society colloquium publications, vol. 61. American Mathematical Society, Providence (2013)Google Scholar
  4. 4.
    Buzzard, K., Gee, T.: The conjectural connections between automorphic representations and Galois representations. In: Automorphic forms and Galois representations, vol. 1. London Math. Soc. Lecture Note Ser., vol. 444, pp 135–187. Cambridge University Press, Cambridge (2014)Google Scholar
  5. 5.
    Braverman, A., Kazhdan, D.: γ-functions of representations and lifting. Geom. Funct. Anal. (Special Volume, Part I), pp. 237–278 (2000)Google Scholar
  6. 6.
    Braverman, A., Kazhdan, D.: γ-sheaves on reductive groups. In: Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000). Progr. Math., vol. 210, pp 27–47. Birkhäuser Boston, Boston (2003)Google Scholar
  7. 7.
    Brion, M.: Vers une généralisation des espaces symétriques. J. Algebra 134 (1), 115–143 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Delorme, P., Harinck, P., Sakellaridis, Y.: Paley-Wiener theorems for a p-adic spherical variety. To appear in Memoirs of the AMSGoogle Scholar
  9. 9.
    Godement, R., Jacquet, H.: Zeta functions of simple algebras. Lecture Notes in Mathematics, vol. 260. Springer, Berlin (1972)CrossRefGoogle Scholar
  10. 10.
    Herman, P.E.: The functional equation and beyond endoscopy. Pacific J. Math. 260(2), 497–513 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ichino, A., Ikeda, T.: On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture. Geom. Funct. Anal. 19(5), 1378–1425 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jacquet, H.: Smooth transfer of Kloosterman integrals. Duke Math. J. 120(1), 121–152 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Johnstone, D.: A Gelfand–Graev formula and stable transfer factors for SLn(F). PreprintGoogle Scholar
  14. 14.
    Kaletha, T., Minguez, A., Shin, S.W., White, P.-J.: Endoscopic classification of representations: inner forms of unitary groups. PreprintGoogle Scholar
  15. 15.
    Knop, F.: Weylgruppe und Momentabbildung. Invent. Math. 99(1), 1–23 (1990)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Knop, F., Schalke, B.: The dual group of a spherical variety. Trans. Moscow Math. Soc. 78, 187–216 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lafforgue, L.: Noyaux du transfert automorphe de Langlands et formules de Poisson non linéaires. Jpn. J. Math. 9(1), 1–68 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Langlands, R.P.: Beyond endoscopy. Contributions to automorphic forms, geometry, and number theory, pp 611–697. Johns Hopkins University Press, Baltimore (2004)zbMATHGoogle Scholar
  19. 19.
    Langlands, R.P.: Singularités et transfert. Ann. Math. Qué. 37(2), 173–253 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lapid, E., Mao, Z.: A conjecture on Whittaker-Fourier coefficients of cusp forms. J. Number Theory 146, 448–505 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mok, C.P.: Endoscopic classification of representations of quasi-split unitary groups. Mem. Am. Math. Soc. 235(1108), vi+ 248 (2015)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ngô, B.C.: Geometry of arc spaces, generalized Hankel transforms and Langlands functoriality. PreprintGoogle Scholar
  23. 23.
    Ngô, B.C.: On a certain sum of automorphic L-functions. In: Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro. Contemp. Math., vol. 614, 337–343. Am. Math. Soc., Providence, RI (2014)Google Scholar
  24. 24.
    Popov, V.L.: Contractions of actions of reductive algebraic groups. Mat. Sb. (N.S.) 130(172)(3), 310–334 (1986)zbMATHGoogle Scholar
  25. 25.
    Rudnick, Z.: Poincare series. PhD thesis, Yale University, New Haven (1990)Google Scholar
  26. 26.
    Sakellaridis, Y.: Beyond endoscopy for the relative trace formula II: Global theory. To appear in J. Inst. Math. Jussieu.  https://doi.org/10.1017/S1474748017000032 (2017)
  27. 27.
    Sakellaridis, Y.: Functorial transfer between relative trace formulas in rank one. PreprintGoogle Scholar
  28. 28.
    Sakellaridis, Y.: The Selberg trace formula revisited. PreprintGoogle Scholar
  29. 29.
    Sakellaridis, Y.: Transfer operators and Hankel transforms between relative trace formulas, I: Character theory. PreprintGoogle Scholar
  30. 30.
    Sakellaridis, Y.: Transfer operators and Hankel transforms between relative trace formulas, II: Rankin–Selberg theory. PreprintGoogle Scholar
  31. 31.
    Sakellaridis, Y.: Spherical varieties and integral representations of L-functions. Algebra Number Theory 6(4), 611–667 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sakellaridis, Y.: Beyond endoscopy for the relative trace formula I: Local theory. In: Prasad, D., Rajan, C.S., Sankaranarayanan, A., Sengupta, J. (eds.) Automorphic representations and L-functions, 521–590. Am. Math. Soc., Providence, RI. Tata Institute of Fundamental Research, Mumbai (2013)Google Scholar
  33. 33.
    Sakellaridis, Y.: The Schwartz space of a smooth semi-algebraic stack. Selecta Math. (N.S.) 22(4), 2401–2490 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sakellaridis, Y., Venkatesh, A.: Periods and harmonic analysis on spherical varieties. Astérisque 396, 360 (2017)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Tate, J.: Fourier analysis in number fields and Hecke’s zeta-functions. PhD thesis, Princeton University, Princeton (1950)Google Scholar
  36. 36.
    Tate, J.: Number theoretic background. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, 3–26. Am. Math. Soc., Providence RI (1979)Google Scholar
  37. 37.
    van Dijk, G.: Computation of certain induced characters of p-adic groups. Math. Ann. 199, 229–240 (1972)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Venkatesh, A.: Beyond endoscopy and special forms on GL(2). J. Reine Angew. Math. 577, 23–80 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceRutgers University at NewarkNewarkUSA

Personalised recommendations