Hölder-Type Global Error Bounds for Non-degenerate Polynomial Systems
- 83 Downloads
Abstract
Let F := (f 1, …, f p ): ℝ n → ℝ p be a polynomial map, and suppose that S := {x ∈ ℝ n : f i (x) ≤ 0,i = 1, …, p}≠∅. Let d := maxi =1, …, p deg f i and \(\mathcal {H}(d, n, p) := d(6d - 3)^{n + p - 1}.\) Under the assumptions that the map F : ℝ n → ℝ p is convenient and non-degenerate at infinity, we show that there exists a constant c > 0 such that the following so-called Hölder-type global error bound result holds \(c d(x,S) \le [f(x)]_{+}^{\frac {2}{\mathcal {H}(2d, n, p)}} + [f(x)]_{+} \quad \textrm { for all } \quad x \in \mathbb {R}^{n},\) where d(x,S) denotes the Euclidean distance between x and S, f(x) := maxi=1, …, p f i (x), and [f(x)]+ := max{f(x),0}. The class of polynomial maps (with fixed Newton polyhedra), which are non-degenerate at infinity, is generic in the sense that it is an open and dense semi-algebraic set. Therefore, Hölder-type global error bounds hold for a large class of polynomial maps, which can be recognized relatively easily from their combinatoric data. This follows up the result on a Frank-Wolfe type theorem for non-degenerate polynomial programs in Dinh et al. (Mathematical Programming Series A, 147(16), 519–538, 2014).
Keywords
Error bounds Newton polyhedron Non-degenerate polynomial maps Palais-Smale conditionMathematics Subject Classification (2010)
Primary 32B20 Secondary 14P 49K40Notes
Acknowledgements
This research was performed while the authors were visiting Vietnam Institute for Advanced Study in Mathematics (VIASM). The authors would like to thank the Institute for hospitality and support. Si Tiep Dinh and Huy Vui Ha were partially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) grant 101.04-2014.23 and the Vietnam Academy of Science and Technology (VAST). Tien Son Pham was partially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) grant 101.04-2016.05.
References
- 1.Arnold, V.I., Gusein-Zade, S., Varchenko, A.N.: Singularities of Differentiable Maps. Monogr. Math., vol. I And II, Birkhäuser, Basel (1985)Google Scholar
- 2.Auslender, A.A., Crouzeix, J.-P.: Global regularity theorem. Math. Oper. Res. 13, 243–253 (1988)MathSciNetCrossRefMATHGoogle Scholar
- 3.Auslender, A.A., Crouzeix, J.-P.: Well behaved asymptotical convex functions. Ann. Inst. H. Poincaré, Anal. Non Linéaire 6, 10–121 (1989)MathSciNetCrossRefMATHGoogle Scholar
- 4.Auslender, A.A., Cominetti, R., Crouzeix, J.-P.: Convex functions with unbounded level sets. SIAM J. Optim. 3, 669–687 (1993)MathSciNetCrossRefMATHGoogle Scholar
- 5.Benedetti, R., Risler, J.: Real Algebraic and Semi-algebraic Sets Hermann (1991)Google Scholar
- 6.Bierstone, E., Milman, P.: Semianalytic and subanalytic sets. Inst. Hautes Études Sci. Publ. Math. 67, 5–42 (1988)MathSciNetCrossRefMATHGoogle Scholar
- 7.Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Vol. 36 springer (1998)Google Scholar
- 8.Bolte, J., Daniilidis, A., Lewis, A.S.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)CrossRefMATHGoogle Scholar
- 9.Borwein, J.M., Li, G., Yao, L.: Analysis of the convergence rate for the cyclic projection algorithm applied to basic semi-algebraic convex sets. SIAM J. Optim. 24, 498–527 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 10.Borwein, J.M., Preiss, D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Am. Math. Soc. 303, 517–527 (1987)MathSciNetCrossRefMATHGoogle Scholar
- 11.Broughton, S.: Milnor number and topology of polynomial hypersurfaces. Invent. Math. 92, 217–241 (1988)MathSciNetCrossRefMATHGoogle Scholar
- 12.Clarke, F.H.: Optimization and Nonsmooth Analysis. New York et al., John Wiley & Sons (1983)Google Scholar
- 13.Clarke, F.H., Ledyaev, Y.S., Sterm, R.J., Wolenski, P.R.: Nonsmooth analysis and control theory. Springer-Verlag Inc., New York (1998)Google Scholar
- 14.Corvellec, J.-N., Motreanu, V.V.: Nonlinear error bounds for lower semicontinuous functions on metric spaces. Math. Program. Ser. A 114(2), 291–319 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 15.Dinh, S.T., Hà, H.V., Thao, N.T.: Łojasiewicz inequality for polynomial functions on non compact domains. Int. J. Math. 23(4), 1250033 (2012). doi: 10.1142/S0129167X12500334. (28 pages)CrossRefMATHGoogle Scholar
- 16.Dinh, S.T., Hà, H.V., Phạm, T. S.: A Frank-Wolfe type theorem for nondegenerate polynomial programs. Mathematical Programming Series A 147, 519–538 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 17.Dinh, S.T., Hà, H.V., Phạm, T.S., Thao, N.T.: Global Łojasiewicz-type inequality for non-degenerate polynomial maps. J. Math. Anal. Appl. 410(2), 541–560 (2014)MathSciNetCrossRefGoogle Scholar
- 18.van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J 84, 497–540 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 19.Ekeland, I.: Nonconvex minimization problems. Bull. A.M.S 1, 443–474 (1979)MathSciNetCrossRefMATHGoogle Scholar
- 20.Forti, M., Tesi, A.: The Łojasiewicz exponent at an equilibrium point of a standard CNN is 1/2. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16(8), 2191–2205 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 21.Gaffney, T.: Integral closure of modules and Whitney equisingularity. Invent. Math. 107, 301–322 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 22.Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Company, Publishers, San Francisco (1979)MATHGoogle Scholar
- 23.Hà, H.V., Duc, N.H.: Łojasiewicz inequality at infinity for polynomials in two real variables. Math. Z 266, 243–264 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 24.Hà, H.V.: Global Hölderian error bound for non-degenerate polynomials. SIAM J. Optim. 23(2), 917–933 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 25.Hoffman, A.J.: On approximate solutions of linear inequalities. J. Res. Natl. Bur. Stand. 49, 263–265 (1952)MathSciNetCrossRefGoogle Scholar
- 26.Hörmander, L.: On the division of distributions by polynomials. Ark. Mat. 3 (53), 555–568 (1958)MathSciNetCrossRefMATHGoogle Scholar
- 27.Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55 (3), 501–558 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 28.Ji, S., Kollár, J., Shiffman, B.: A global Łojasiewicz inequality for algebraic varieties. Trans. Am. Math. Soc. 329(2), 813–818 (1992)MATHGoogle Scholar
- 29.Khovanskii, A.G.: Newton polyhedra and toroidal varieties. Funct. Anal. Appl. 11, 289–296 (1978)CrossRefMATHGoogle Scholar
- 30.Khovanskii, A.G.: Fewnomials. Translated from the Russian by Smilka Zdravkovska Translations of Mathematical Monographs, 88. American Mathematical Society, Providence, RI (1991)Google Scholar
- 31.Klatte, D.: Hoffman’s error bound for systems of convex inequalities. Mathematical Programming with Data Perturbations, 185–199, Lecture Notes in Pure and Appl. Math., 195 Dekker New York (1998)Google Scholar
- 32.Klatte, D., Li, W.: Asymptotic constraint qualifications and global error bounds for convex inequalities. Math. Program. 84, 137–140 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 33.Kollár, J.: An effective Lojasiewicz inequality for real polynomials. Period. Math. Hungar. 38(3), 213–221 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 34.Kouchnirenko, A.G.: Polyhedres de Newton et nombre de Milnor. Invent. Math. 32, 1–31 (1976)MathSciNetCrossRefGoogle Scholar
- 35.Lemaire, B.: Bonne position, conditionnement, et bon comportement asymptotique. sém. Anal. Convexe 22, Exp. No. 5 12 pp (1992)Google Scholar
- 36.Lewis, A.S., Pang, J.S.: Error Bounds for Convex Inequality Systems. Generalized Convexity, Generalized Monotonicity: Recent Results (Luminy, 1996), 75-110, Nonconvex Optim. Appl., 27, Kluwer Acad. Publ., Dordrecht (1998)Google Scholar
- 37.Li, G.: On the asymptotic well behaved functions and global error bound for convex polynomials. SIAM J. Optim. 20(4), 1923–1943 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 38.Li, G., Mordukhovich, B.S.: Hölder metric subregularity with applications to proximal point method. SIAM J. Optim. 22, 1655–1684 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 39.Li, G.: Global error bounds for piecewise convex polynomials. Math. Program. Ser. A 137(1-2), 37–64 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 40.Li, G., Mordukhovich, B.S., Phạm, T.S.: New fractional error bounds for polynomial systems with applications to hölderian stability in optimization and spectral theory of tensors. Math. Program. 153, 333–362 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 41.Li, W.: Error bounds for piecewise convex quadratic programs and applications. SIAM J. Control Optim. 33, 1510–1529 (1995)MathSciNetCrossRefMATHGoogle Scholar
- 42.Łojasiewicz, S.: Division d’une distribution par une fonction analytique de variables réelles. C. R. Acad. S.i. Paris 246, 683–686 (1958)MATHGoogle Scholar
- 43.Luo, Z.-Q., Pang, J.S.: Error bounds for analytic systems and their applications. Math. Program. 67, 1–28 (1994)MathSciNetCrossRefMATHGoogle Scholar
- 44.Luo, Z.-Q., Sturm, J.F. In: Frenk, H., Roos, K., Terlaky, T., Zhang (eds.) : Error bound for quadratic systems, in high performance optimization, pp 383–404. Kluwer, Dordrecht, The Netherlands (2000)Google Scholar
- 45.Mangasarian, O.L.: A condition number for differentiable convex inequalities. Math. Oper. Res. 10, 175–179 (1985)MathSciNetCrossRefMATHGoogle Scholar
- 46.Miller, C.: Exponentiation is hard to avoid. Proc. Am. Math. Soc. 122, 257–259 (1994)MathSciNetCrossRefMATHGoogle Scholar
- 47.Milnor, J.: Singular points of complex hypersurfaces. Annals of mathematics studies 61 princeton university press (1968)Google Scholar
- 48.Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, II. Applications. Springer, Berlin (2006)Google Scholar
- 49.Némethi, A., Zaharia, A.: Milnor fibration at infinity. Indag. Math. 3, 323–335 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 50.Ngai, H.V., Thera, M.: Error bounds for differentiable convex inequality systems in Banach spaces. Math. Program., Ser. B 104(2-3), 465–482 (2005)CrossRefMATHGoogle Scholar
- 51.Oka, M.: Non-Degenerate Complete Intersection Singularity. Actualités Mathématiques. Hermann, Paris (1997)MATHGoogle Scholar
- 52.Pang, J.S.: Error bounds in mathematical programming. Math. Program., Ser. B 79, 299–332 (1997)MathSciNetMATHGoogle Scholar
- 52.Penot, J.P.: Well-behavior, well-posedness and nonsmooth analysis. In: Proceedings of the 4th International Conference on Mathematical Methods in Operations Research and 6th Workshop on Well-posedness and Stability of Optimization Problems (Sozopol, 1997). Pliska Stud. Math. Bulgar, vol. 12, pp 141–190 (1998)Google Scholar
- 54.Robinson, S.M.: An application of error bounds for convex programming in a linear space. SIAM J. Control. 13, 271–273 (1975)MathSciNetCrossRefMATHGoogle Scholar
- 55.Rockafellar, R.T., Wets, R.: Variational Analysis. Grundlehren Math Wiss, vol. 317. Springer, New York (1998)Google Scholar
- 56.Wu, Z., Ye, J.J.: Sufficient conditions for error bounds. SIAM J. Optim. 12, 421–435 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 57.Yang, W.H.: Error bounds for convex polynomials. SIAM J. Optim. 19(4), 1633–1647 (2008)MathSciNetCrossRefMATHGoogle Scholar