Acta Mathematica Vietnamica

, Volume 38, Issue 3, pp 471–485 | Cite as

Lacunary statistical convergence of double sequences and some inclusion results in n-normed spaces

Article

Abstract

In this paper, we introduce the concept of lacunary statistical convergence of double sequences in n-normed spaces. Some inclusion relations between the sets of statistically convergent and lacunary statistically convergent cases of double sequences are established. In addition, we also define lacunary statistical Cauchy double sequences and prove that this notion is equivalent to the lacunary statistical convergence of double sequences.

Keywords

Statistical convergence Double lacunary sequence P-convergent n-norm 

Mathematics Subject Classification

40A05 40B50 46A19 46A45 

References

  1. 1.
    Buck, R.C.: Generalized asymptotic density. Am. J. Math. 75, 335–346 (1953) MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Çakalli, H.: Lacunary statistical convergence in topological groups. Indian J. Pure Appl. Math. 26(2), 113–119 (1995) MathSciNetMATHGoogle Scholar
  3. 3.
    Çakalli, H.: A study on statistical convergence. Funct. Anal. Approx. Comput. 1(2), 19–24 (2009) MathSciNetMATHGoogle Scholar
  4. 4.
    Çakan, C., Altay, B., Çoşkun, H.: Double lacunary density and lacunary statistical convergence of double sequences. Studia Sci. Math. Hung. 47(1), 35–45 (2010) CrossRefMATHGoogle Scholar
  5. 5.
    Connor, J., Swardson, M.A.: Measures and ideals of C (X). Ann. N.Y. Acad. Sci. 704, 80–91 (1993) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Connor, J., Swardson, M.A.: Strong integral summability and the Stone–Çech compactification of the half-line. Pac. J. Math. 157(2), 201–224 (1993) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dutta, H.: On sequence spaces with elements in a sequence of real linear n-normed spaces. Appl. Math. Lett. 23, 1109–1113 (2010) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Erdos, P., Tenenbaum, G.: Sur les densites de certaines suites dentiers. Proc. Lond. Math. Soc. 59(3), 417–438 (1989) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951) MathSciNetMATHGoogle Scholar
  10. 10.
    Freedman, A.R., Sember, J.J.: Densities and summability. Pac. J. Math. 95(2), 293–305 (1981) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Freedman, A.R., Sember, J.J., Raphael, M.: Some Cesaro-type summability spaces. Proc. Lond. Math. Soc. 37(3), 508–520 (1978) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fridy, J.A.: On statistical convergence. Analysis 5, 301–313 (1985) MathSciNetMATHGoogle Scholar
  13. 13.
    Fridy, J.A., Orhan, C.: Lacunary statistical convergence. Pac. J. Math. 160(1), 43–51 (1993) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fridy, J.A., Orhan, C.: Lacunary statistical summability. J. Math. Anal. Appl. 173, 497–504 (1993) MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gähler, S.: 2-metrische Raume and ihre topologische Struktur. Math. Nachr. 26, 115–148 (1963) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gähler, S.: Linear 2-normietre Raume. Math. Nachr. 28, 1–43 (1965) CrossRefGoogle Scholar
  17. 17.
    Gunawan, H.: The spaces of p-summable sequences and its natural n-norm. Bull. Aust. Math. Soc. 64, 137–147 (2001) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gunawan, H., Mashadi, M.: On n-normed spaces. Int. J. Math. Math. Sci. 27(10), 631–639 (2001) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gunawan, H., Mashadi, M.: On finite dimensional 2-normed spaces. Soochow J. Math. 27(3), 147–169 (2001) MathSciNetGoogle Scholar
  20. 20.
    Gürdal, M., Pehlivan, S.: Statistical convergence in 2-normed spaces. Southeast Asian Bull. Math. 33, 257–264 (2009) MathSciNetMATHGoogle Scholar
  21. 21.
    Lewandowska, Z.: On 2-normed sets. Glas. Mat. 38(58), 99–110 (2003) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Li, J.: Lacunary statistical convergence and inclusion properties between lacunary methods. Int. J. Math. Math. Sci. 23(3), 175–180 (2000) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Maddox, I.J.: Statistical convergence in a locally convex space. Math. Proc. Camb. Philos. Soc. 104(1), 141–145 (1988) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Maio, G.D., Kocinac, L.D.R.: Statistical convergence in topology. Topol. Appl. 156, 28–45 (2008) CrossRefMATHGoogle Scholar
  25. 25.
    Miller, H.I.: A measure theoretical subsequence characterization of statistical convergence. Trans. Am. Math. Soc. 347(5), 1811–1819 (1995) CrossRefMATHGoogle Scholar
  26. 26.
    Misiak, A.: n-inner product spaces. Math. Nachr. 140, 299–329 (1989) MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Mursaleen, M., Edely, O.H.: Statistical convergence of double sequences. J. Math. Anal. Appl. 288, 223–231 (2003) MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Patterson, R.F.: Analogues of some fundamental theorems of summability theory. Int. J. Math. Math. Sci. 23(1), 1–9 (2000) MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Pringsheim, A.: Zur theorie der zweifach unendlichen zahlenfolgen. Math. Ann. 53, 289–321 (1900) MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Reddy, B.S.: Statistical convergence in n-normed spaces. Int. Math. Forum 24, 1185–1193 (2010) Google Scholar
  31. 31.
    S̆alát, T.: On statistical convergence of real numbers. Math. Slovaca 30, 139–150 (1980) MathSciNetGoogle Scholar
  32. 32.
    Savas, E.: Remark on double lacunary statistical convergence of fuzzy numbers. J. Comput. Anal. Appl. 11(1), 64–69 (2009) MathSciNetMATHGoogle Scholar
  33. 33.
    Savas, E.: On some new double lacunary sequences spaces via Orlicz function. J. Comput. Anal. Appl. 11(3), 423–430 (2009) MathSciNetMATHGoogle Scholar
  34. 34.
    Savas, E.: On generalized A-difference strongly summable sequence spaces defined by ideal convergence on a real n-normed space. J. Inequal. Appl. 2012, 87 (2012). doi:10.1186/1029-242X-2012-87 MathSciNetCrossRefGoogle Scholar
  35. 35.
    Savas, E., Patterson, R.F.: Lacunary statistical convergence of double sequences. Math. Commun. 10, 55–61 (2005) MathSciNetMATHGoogle Scholar
  36. 36.
    Savas, E., Patterson, R.F.: Lacunary statistical convergence of multiple sequences. Appl. Math. Lett. 19, 527–534 (2006) MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Savas, E., Patterson, R.F.: Double sequence spaces defined by Orlicz functions. Iran. J. Sci. Technol., Trans. A, Sci. 31(2), 183–188 (2007) MathSciNetMATHGoogle Scholar
  38. 38.
    Savas, E., Patterson, R.F.: \((\overline{\lambda},\sigma)\)-double sequence spaces via Orlicz function. J. Comput. Anal. Appl. 10(1), 101–111 (2008) MathSciNetMATHGoogle Scholar
  39. 39.
    Savas, E., Patterson, R.F.: Double σ-convergence lacunary statistical sequences. J. Comput. Anal. Appl. 11(4), 610–615 (2009) MathSciNetMATHGoogle Scholar
  40. 40.
    Savas, E., Patterson, R.F.: Some double lacunary sequence spaces defined by Orlicz functions. Southeast Asian Bull. Math. 35(1), 103–110 (2011) MathSciNetMATHGoogle Scholar
  41. 41.
    Schoenberg, I.J.: The integrability of certain functions and related summability methods. Am. Math. Mon. 66, 361–375 (1959) MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73–74 (1951) MathSciNetGoogle Scholar
  43. 43.
    Zygmund, A.: Trigonometric Series. Cambridge Univ. Press, Cambridge (1979) Google Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2013

Authors and Affiliations

  1. 1.Department of MathematicsRajiv Gandhi UniversityDoimukhIndia
  2. 2.Department of MathematicsIstanbul Ticaret UniversityUskudar-IstanbulTurkey

Personalised recommendations