Advertisement

Generalizations of Sobolev’s Consistency and Values for TU-Games

  • Jun Su
  • Theo S. H. Driessen
  • Gen-Jiu XuEmail author
Article
  • 18 Downloads

Abstract

In the framework of cooperative game theory, Sobolev (Advances in game theory, Izdat., “Minitis”, Vilnius, pp 151–153, 1973) axiomatized the well-known Shapley value by means of consistency property with reference to a specifically chosen reduced game. The goal of this paper is to generalize Sobolev’s consistency approach to the class of efficient, symmetric and linear values.

Keywords

Cooperative game Reduced game Shapley value Linear value Sobolev’s consistency 

Mathematics Subject Classification

91A06 91A12 

References

  1. 1.
    Driessen, T.S.H.: A survey of consistency properties in cooperative game theory. SIAM Rev. 33, 43–59 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar
  3. 3.
    Nowak, A.S., Radzil, T.: A solidarity value for n-person transferable utility games. Int. J. Game Theory 23, 43–48 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Sobolev, A.I.: The functional equations that give the payoffs of the players in an n-person game (in Russian). In: Vilas, E. (ed.) Advances in Game Theory, pp. 151–153. Izdat. “Minitis”, Vilnius (1973)Google Scholar
  5. 5.
    Joosten, R.: Dynamics, equilibria and values. Ph.D. Dissertation, Maastricht University, Maastricht, The Netherlands (1996)Google Scholar
  6. 6.
    van den Brink, R., Funaki, Y., Ju, Y.: Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values. Soc. Choice Welf. 40, 693–714 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kleinberg, N.L.: A note on the Sobolev consistency of linear symmetric values. Soc. Choice Welf. 44, 765–779 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Driessen, T.S.H.: Associated consistency and values for TU games. Int. J. Game Theory 39, 467–482 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ruiz, L.M., Valenciano, F., Zarzuelo, J.M.: The family of least square values for transferable utility games. Games Econ. Behav. 24, 109–130 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dragan, I., Driessen, T.S.H., Funaki, Y.: Collinearity between the Shapley value and the egalitarian division rules for cooperative games. OR Spektrum 18, 97–105 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ju, Y., Borm, P., Ruys, P.: The consensus value: a new solution concept for cooperative games. Soc. Choice Welf. 28, 685–703 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hart, S., Mas-Colell, A.: Potential, value, and consistency. Econometrica 57, 589–614 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Driessen, T.S.H., Radzik, T.: Extensions of Hart and Mas-Colell’s consistency to efficient, linear, and symmetric values for TU-games. In: Proceedings Volume of Inernational Congress of Mathematicians, Game Theory and Applications Satellite Conference, pp. 129–146 (2002)Google Scholar
  14. 14.
    Xu, G.: Matrix Approach to Cooperative Game Theory. Ph.D. Dissertation, University of Twente, Enschede, The Netherlands (2008)Google Scholar
  15. 15.
    Davis, M., Maschler, M.: The kernel of a cooperative game. Nav. Res. Logist. Q. 12, 223–259 (1965)MathSciNetCrossRefGoogle Scholar

Copyright information

© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceXi’an University of Science and TechnologyXi’anChina
  2. 2.Department of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands
  3. 3.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations