Advertisement

An Alternative Approach to Rank Efficient DMUs in DEA via Cross-Efficiency Evaluation, Gini Coefficient, and Bonferroni Mean

  • Zahra Behdani
  • Majid DarehmirakiEmail author
Article
  • 18 Downloads

Abstract

In this paper, we focus on a critical problem in data envelopment analysis (DEA) and propose a simple resolution for it. The major problem of the DEA is the existence of several efficient decision-making units (DMUs). To deal with this issue, we introduce a method that involves cross-efficiency evaluation, Gini coefficient, and Bonferroni mean. First, a cross-efficiency matrix is developed. Then, mixing the Gini coefficient and Bonferroni mean, a Gini–Bonferroni (GB) index is proposed for ranking efficient DMUs, where the DMUs with bigger GB are ranked higher. The proposed method broke the tie between efficient DMUs. Finally, a numerical example and real application of this method are presented in the ranking of research and development (R&D) investment companies in the pharmaceutical and biotechnology industries.

Keywords

Data envelopment analysis Efficiency Gini coefficient Bonferroni mean Cross-efficiency evaluation Ranking Efficient units 

Mathematics Subject Classification

90B50 97K80 

Notes

Acknowledgements

The authors thank the organizers of ICO2018, 4–5th October 2018, Hard Rock Hotel, Pattaya, Thailand, for the opportunity to presents their research results in this paper.

References

  1. [1]
    Singh, S., Aggarwal, R.: DEAHP approach for manpower performance evaluation. J. Oper. Res. Soc. China 2(3), 317–332 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Zhang, M., Wang, L.L., Cui, J.C.: Extra resource allocation: a DEA approach in the view of efficiencies. J. Oper. Res. Soc. China 6(1), 85–106 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Mustafa, A., Emrouznejad, A.: Ranking efficient decision-making units in data envelopment analysis using fuzzy concept. Comput. Ind. Eng. 59(4), 712–719 (2010)CrossRefGoogle Scholar
  4. [4]
    Adler, N., Friedman, L., Sinuany-Stern, Z.: Review of ranking methods in the data envelopment analysis context. Eur. J. Oper. Res. 140(2), 249–265 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Angiz, M.Z., Mustafa, A., Kamali, M.J.: Cross-ranking of decision making units in data envelopment analysis. Appl. Math. Model. 37(1–2), 398–405 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Contreras, I.: Optimizing the rank position of the DMU as secondary goal in DEA cross-evaluation. Appl. Math. Model. 36(6), 2642–2648 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Darehmiraki, M., Behdani, Z.: A new DEA approach to rank alternatives in MCDA. J. Data Envel. Anal. Decis. Sci. 2013, 1–7 (2013)Google Scholar
  8. [8]
    Sexton, T.R., Silkman, R.H., Hogan, A.J.: Data envelopment analysis: critique and extensions. New Dir. Program Eval. 1986(32), 73–105 (1986)CrossRefGoogle Scholar
  9. [9]
    Bao, C.P., Chen, T.H., Chang, S.Y.: Slack-based ranking method: an interpretation to the cross-efficiency method in DEA. J. Oper. Res. Soc. 59(6), 860–862 (2008)zbMATHCrossRefGoogle Scholar
  10. [10]
    Alcaraz, J., Ramón, N., Ruiz, J.L., Sirvent, I.: Ranking ranges in cross-efficiency evaluations. Eur. J. Oper. Res. 226(3), 516–521 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Wu, D.D.: Performance evaluation: an integrated method using data envelopment analysis and fuzzy preference relations. Eur. J. Oper. Res. 194(1), 227–235 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Wang, Y.M., Chin, K.S.: Some alternative models for DEA cross-efficiency evaluation. Int. J. Prod. Econ. 128(1), 332–338 (2010)CrossRefGoogle Scholar
  13. [13]
    Wu, J., Liang, L., Chen, Y.: DEA game cross-efficiency approach to Olympic rankings. Omega 37(4), 909–918 (2009)CrossRefGoogle Scholar
  14. [14]
    Wu, J., Liang, L., Yang, F.: Determination of the weights for the ultimate cross efficiency using Shapley value in cooperative game. Expert Syst. Appl. 36(1), 872–876 (2009)CrossRefGoogle Scholar
  15. [15]
    Wu, J., Liang, L., Yang, F., Yan, H.: Bargaining game model in the evaluation of decision making units. Expert Syst. Appl. 36(3), 4357–4362 (2009)CrossRefGoogle Scholar
  16. [16]
    Zahedi-Seresht, M., Jahanshahloo, G.R., Jablonsky, J., Asghariniya, S.: A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numer. Algebra Control Optim. 7(4), 403–416 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Hong, J.D., Jeong, K.Y.: Cross efficiency based heuristics to rank decision making units in data envelopment analysis. Comput. Ind. Eng. 111, 320–330 (2017)CrossRefGoogle Scholar
  18. [18]
    Liu, S.T.: A DEA ranking method based on cross-efficiency intervals and signal-to-noise ratio. Ann. Oper. Res. 261(1–2), 207–232 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Khodabakhshi, M., Aryavash, K.: The cross-efficiency in the optimistic–pessimistic framework. Oper. Res. 17(2), 619–632 (2017)Google Scholar
  20. [20]
    Ruiz, J.L., Sirvent, I.: Fuzzy cross-efficiency evaluation: a possibility approach. Fuzzy Optim. Decis. Making 16(1), 111–126 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Huang, Y., Wang, Y.M.: Pareto approach for DEA cross efficiency evaluation based on interval programming. J. Intell. Fuzzy Syst. 33(4), 2375–2389 (2017)zbMATHCrossRefGoogle Scholar
  22. [22]
    An, Q., Meng, F., Xiong, B.: Interval cross efficiency for fully ranking decision making units using DEA/AHP approach. Ann. Oper. Res. 271, 297–317 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Song, L., Liu, F.: An improvement in DEA cross-efficiency aggregation based on the Shannon entropy. Int. Trans. Oper. Res. 25(2), 705–714 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Rezaeiani, M.J., Foroughi, A.A.: Ranking efficient decision making units in data envelopment analysis based on reference frontier share. Eur. J. Oper. Res. 264(2), 665–674 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Chen, H.: Average lexicographic efficiency for data envelopment analysis. Omega 74, 82–91 (2018)CrossRefGoogle Scholar
  26. [26]
    Li, F., Zhu, Q., Chen, Z., Xue, H.: A balanced data envelopment analysis cross-efficiency evaluation approach. Expert Syst. Appl. 106, 154–168 (2018)CrossRefGoogle Scholar
  27. [27]
    Oukil, A.: Ranking via composite weighting schemes under a DEA cross-evaluation framework. Comput. Ind. Eng. 117, 217–224 (2018)CrossRefGoogle Scholar
  28. [28]
    Ang, S., An, Q., Yang, M., Yang, F.: Ranking ranges, performance maverick and diversity for decision-making units with interval cross-efficiency matrix. Int. J. Syst. Sci. Oper. Logist. 1–14 (2018)Google Scholar
  29. [29]
    Hou, Q., Wang, M., Zhou, X.: Improved DEA cross efficiency evaluation method based on ideal and anti-ideal points. Discret. Dyn. Nat. Soc. (2018)Google Scholar
  30. [30]
    Hinojosa, M.A., Lozano, S., Borrero, D.V., Mármol, A.M.: Ranking efficient DMUs using cooperative game theory. Expert Syst. Appl. 80, 273–283 (2017)CrossRefGoogle Scholar
  31. [31]
    Wu, J., Chu, J., Zhu, Q., Yin, P., Liang, L.: DEA cross-efficiency evaluation based on satisfaction degree: an application to technology selection. Int. J. Prod. Res. 54(20), 5990–6007 (2016)CrossRefGoogle Scholar
  32. [32]
    Liu, H.H., Song, Y.Y., Yang, G.L.: Cross-efficiency evaluation in data envelopment analysis based on prospect theory. Eur. J. Oper. Res. 273(1), 364–375 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    Foroughi, A.A., Tavassoli, M.H.: Discriminating extreme efficient decision making units in DEA using random weight vectors. Comput. Ind. Eng. 128, 305–312 (2019)CrossRefGoogle Scholar
  34. [34]
    Liu, S.T., Lee, Y.C.: Fuzzy measures for fuzzy cross efficiency in data envelopment analysis. Ann. Oper. Res. 1–30 (2019)Google Scholar
  35. [35]
    Davtalab-Olyaie, M., Asgharian, M., Nia, V.P.: Stochastic ranking and dominance in DEA. Int. J. Prod. Econ. 214, 125–138 (2019)zbMATHCrossRefGoogle Scholar
  36. [36]
    Lin, R. Cross-efficiency evaluation capable of dealing with negative data: a directional distance function based approach. J. Oper. Res. Soc. 1–12 (2019)‏Google Scholar
  37. [37]
    Lee, Y.C.: Ranking DMUs by combining cross-efficiency scores based on Shannon’s entropy. Entropy 21(5), 467 (2019)CrossRefGoogle Scholar
  38. [38]
    Shi, H., Wang, Y., Chen, L.: Neutral cross-efficiency evaluation regarding an ideal frontier and anti-ideal frontier as evaluation criteria. Comput. Ind. Eng. 132, 385–394 (2019)CrossRefGoogle Scholar
  39. [39]
    Örkcü, H.H., Özsoy, V.S., Örkcü, M., Bal, H.: A neutral cross efficiency approach for basic two stage production systems. Expert Syst. Appl. 125, 333–344 (2019)CrossRefGoogle Scholar
  40. [40]
    Bal, H., Örkcü, H.H., Çelebioğlu, S.: A new method based on the dispersion of weights in data envelopment analysis. Comput. Ind. Eng. 54(3), 502–512 (2008)CrossRefGoogle Scholar
  41. [41]
    Ziari, S., Raissi, S.: Ranking efficient DMUs using minimizing distance in DEA. J. Ind. Eng. Int. 12(2), 237–242 (2016)CrossRefGoogle Scholar
  42. [42]
    Ziari, S., Sharifzadeh, M.: An approach to rank efficient DMUs in DEA based on combining Manhattan and infinity norms. Iran. J. Optim. 9(1), 13–19 (2017)Google Scholar
  43. [43]
    Ebrahimnejad, A., Ziari, S.: New model for improving discrimination power in DEA based on dispersion of weights. Int. J. Math. Oper. Res. 14(3), 433–450 (2019)MathSciNetCrossRefGoogle Scholar
  44. [44]
    Gini, C.: Variabilita’emutabilita’studieconomicogiuridiciuniversita’di’cagliari Ill, 2a, Bologna (1912)Google Scholar
  45. [45]
    Bonferroni, C.: Sulle medie multiple di potenze. Bollettino dell’Unione Matematica Italiana 5(3–4), 267–270 (1950)MathSciNetzbMATHGoogle Scholar
  46. [46]
    Tian, Z.P., Wang, J., Wang, J.Q., Chen, X.H.: Multicriteria decision-making approach based on gray linguistic weighted Bonferroni mean operator. Int. Trans. Oper. Res. 25(5), 1635–1658 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    Zhou, J., Baležentis, T., Streimikiene, D.: Normalized weighted Bonferroni harmonic mean-based intuitionistic fuzzy operators and their application to the sustainable selection of search and rescue robots. Symmetry 11(2), 218 (2019)zbMATHCrossRefGoogle Scholar
  48. [48]
    Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    Sherman, H.D., Gold, F.: Bank branch operating efficiency: evaluation with data envelopment analysis. J. Bank. Finance 9(2), 297–315 (1985)CrossRefGoogle Scholar
  50. [50]
    Jin, M., Ang, S., Yang, F., Bi, G.: An improved cross-ranking method in data envelopment analysis. INFOR 54(1), 19–32 (2016)MathSciNetGoogle Scholar
  51. [51]
    Carrillo, M., Jorge, J.M.: An alternative neutral approach for cross-efficiency evaluation. Comput. Ind. Eng. 120, 137–145 (2018)CrossRefGoogle Scholar
  52. [52]
    Liang, L., Wu, J., Cook, W.D., Zhu, J.: The DEA game cross-efficiency model and its Nash equilibrium. Oper. Res. 56(5), 1278–1288 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    Doyle, J., Green, R.: Efficiency and cross-efficiency in DEA: derivations, meaning and uses. J. Oper. Res. Soc. 45, 567–578 (1994)zbMATHCrossRefGoogle Scholar
  54. [54]
    Ganesan, T., Vasant, P., Elamvazuthi, I.: Advances in Metaheuristics: Applications in Engineering Systems. CRC Press, Boca Raton (2016)zbMATHCrossRefGoogle Scholar
  55. [55]
    Vasant, P., Kose, U., Watada, J.: Metaheuristic techniques in enhancing the efficiency and performance of thermo-electric cooling devices. Energies 10(11), 1703 (2017)CrossRefGoogle Scholar
  56. [56]
    Vasant, P., Zelinka, I., Weber, G.W.: Intelligent Computing and Optimization. Springer, Berlin (2019)CrossRefGoogle Scholar
  57. [57]
    Vasant, P., Marmolejo, J.A., Litvinchev, I., Aguilar, R.R.: Nature-inspired meta-heuristics approaches for charging plug-in hybrid electric vehicle. Wirel. Netw. 1–14 (2019‏‏Google Scholar
  58. [58]
    Zelinka, I., Tomaszek, L., Vasant, P., Dao, T.T., Hoang, D.V.: A novel approach on evolutionary dynamics analysis–a progress report. J. Comput. Sci. 25, 437–445 (2018)CrossRefGoogle Scholar

Copyright information

© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsBehbahan Khatam Alanbia University of TechnologyBehbahanIran

Personalised recommendations