Advertisement

Inverse Generalized Minimum Cost Flow Problem Under the Hamming Distances

  • Mobarakeh Karimi
  • Massoud Aman
  • Ardeshir Dolati
Article
  • 7 Downloads

Abstract

Given a generalized minimum cost flow problem, the corresponding inverse problem is to find a minimal adjustment of the cost function so that the given generalized flow becomes optimal to the problem. In this paper, we consider both types of the weighted Hamming distances for measuring the adjustment. In the sum-type case, it is shown that the inverse problem is APX-hard. In the bottleneck-type case, we present a polynomial time algorithm.

Keywords

Generalized minimum cost flow Inverse problem Hamming distance Binary search 

Notes

Acknowledgements

We thank the anonymous referees for giving valuable comments and suggestions to improve the presentation of this paper.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, New Jersey (1993)zbMATHGoogle Scholar
  2. 2.
    Ahuja, R.K., Orlin, J.B.: Inverse optimization. Oper. Res. 49, 771–783 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aman, M., Tayyebi, J.: Capacity inverse minimum cost flow problem under the weighted Hamming distances. Iran. J. Oper. Res. 5, 12–25 (2014)zbMATHGoogle Scholar
  4. 4.
    Guler, C., Hamacher, H.W.: Capacity inverse minimum cost flow problem. J. Comb. Optim. 19, 43–59 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Heuberger, C.: Inverse combinatorial optimization: a survey on problems, methods, and results. J. Comb. Optim. 8, 329–361 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hochbaumand, D.S., Naor, J.: Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM. J. Comput. 23, 1179–1192 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jiang, Y., Liu, L., Wuc, B., Yao, E.: Inverse minimum cost flow problems under the weighted Hamming distance. Eur. J. Oper. Res. 207, 50–54 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liu, L., Yao, E.: Capacity inverse minimum cost flow problems under the weighted Hamming distance. Optim. Lett. 10, 1257–1268 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Tayyebi, J., Aman, M.: On inverse linear programming problems under the bottleneck-type weighted Hamming distance. Discr. Appl. Math (2016).  https://doi.org/10.1016/j.dam.2015.12.017 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhang, J., Liu, Z.: Calculating some inverse linear programming problem. J. Comput. Appl. Math. 72, 261–273 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mobarakeh Karimi
    • 1
  • Massoud Aman
    • 1
  • Ardeshir Dolati
    • 2
  1. 1.Faculty of Mathematics and StatisticsUniversity of BirjandBirjandIran
  2. 2.Department of Computer ScienceShahed UniversityTehranIran

Personalised recommendations