Radicals and Köthe’s Conjecture for Skew PBW Extensions

  • Armando ReyesEmail author
  • Héctor Suárez


The aim of this paper is to investigate different radicals (Wedderburn radical, lower nil radical, Levitzky radical, upper nil radical, the set of all nilpotent elements, the sum of all nil left ideals) of the noncommutative rings known as skew Poincaré–Birkhoff–Witt extensions. We characterize minimal prime ideals of these rings and prove that the Köthe’s conjecture holds for these extensions. Finally, we establish the transfer of several ring-theoretical properties (reduced, symmetric, reversible, 2-primal) from the coefficients ring of a skew PBW extension to the extension itself.


Armendariz rings Köthe’s conjecture Skew PBW extensions 

Mathematics Subject Classification

16S36 16S80 16N40 16U20 



The first author was supported by the research fund of Facultad de Ciencias, Code HERMES 41535, Universidad Nacional de Colombia, Bogotá, Colombia.


  1. 1.
    Amitsur, S.A.: Algebras over infinite fields. Proc. Am. Math. Soc. 7, 35–48 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Anderson, D.D., Camillo, V.: Armendariz rings and Gaussian rings. Commun. Algebra 26(7), 2265–2275 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Artamonov, V.: Derivations of skew PBW extensions. Commun. Math. Stat. 3(4), 449–457 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Artamonov, V., Lezama, O., Fajardo, W.: Extended modules and Ore extensions. Commun. Math. Stat. 4(2), 189–202 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bell, A., Goodearl, K.: Uniform rank over differential operator rings and Poincaré–Birkhoff–Witt extensions. Pac. J. Math. 131(11), 13–37 (1988)zbMATHCrossRefGoogle Scholar
  6. 6.
    Gallego, C., Lezama, O.: Gröbner bases for ideals of \(\sigma \)-PBW extensions. Commun. Algebra 39(1), 50–75 (2011)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gallego, C., Lezama, O.: Projective modules and Gröbner bases for skew PBW extensions. Diss. Math. 521, 1–50 (2017)zbMATHGoogle Scholar
  8. 8.
    Hinchcliffe, O.: Diffusion algebras. PhD Thesis, University of Sheffield, England (2005)Google Scholar
  9. 9.
    Isaev, A.P., Pyatov, P.N., Rittenberg, V.: Diffusion algebras. J. Phys. A 34(29), 5815–5834 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kandri-Rody, A., Weispfenning, V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comput. 9(1), 1–26 (1990)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kirkman, E., Kuzmanovich, J., Zhang, J.J.: Shephard–Todd–Chevalley theorem for skew polynomial rings. Algebr. Represent. Theory 13(2), 127–158 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Köthe, G.: Die Struktur der Ringe, deren Restklassenring nach dem Radikal vollständing reduzibel ist. Math. Z. 32, 161–186 (1930)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Krempa, J.: Some examples of reduced rings. Algebra Colloq. 3(4), 289–300 (1996)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Lam, T.Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics, vol. 131, 2nd edn. Springer, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Lezama, O., Acosta, J.P., Reyes, A.: Prime ideals of skew PBW extensions. Rev. Un. Mat. Argent. 56(2), 39–55 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lezama, O., Reyes, A.: Some homological properties of skew PBW extensions. Commun. Algebra 42(3), 1200–1230 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Marks, G.: A taxonomy of 2-primal rings. J. Algebra 266(2), 494–520 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. Graduate Studies in Mathematics, vol. 30. AMS, Providence (2001)Google Scholar
  19. 19.
    Nasr-Isfahani, A.R.: Radicals of Ore extension of skew Armendariz rings. Commun. Algebra 44(3), 1302–1320 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Niño, D., Reyes, A.: Some ring theoretical properties for skew Poincaré–Birkhoff–Witt extensions. Bol. Mat. (N. S.) 24(2), 131–148 (2017)Google Scholar
  21. 21.
    Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34(3), 480–508 (1933)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Rege, M.B., Chhawchharia, S.: Armendariz rings. Proc. Jpn. Acad. Ser. A Math. Sci 73(1), 14–17 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Reyes, A.: Gelfand–Kirillov dimension of skew PBW extensions. Rev. Colomb. Mat. 47(1), 95–111 (2013)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Reyes, A.: Jacobson’s conjecture and skew PBW extensions. Rev. Integr. Temas Mat. 32(2), 139–152 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Reyes, A.: Skew PBW extensions of Baer, quasi-Baer, p.p and p.q-rings. Rev. Integr. Temas Mat. 33(2), 173–189 (2015)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Reyes, A.: \(\sigma \)-PBW extensions of skew \(\Pi \)-Armendariz rings. Far East J. Math. Sci. (FJMS) 103(2), 401–428 (2018)CrossRefGoogle Scholar
  27. 27.
    Reyes, A.: Armendariz modules over skew PBW extensions. Commun. Algebra. 47(3), 1248–1270 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Reyes, A., Suárez, H.: Armendariz property for skew PBW extensions and their classical ring of quotients. Rev. Integr. Temas Mat. 34(2), 147–168 (2016)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Reyes, A., Suárez, H.: PBW bases for some 3-dimensional skew polynomial algebras. Far East J. Math. Sci. (FJMS) 101(6), 1207–1228 (2017)zbMATHCrossRefGoogle Scholar
  30. 30.
    Reyes, A., Suárez, H.: Bases for quantum algebras and skew Poincaré–Birkhoff–Witt extensions. Momento 54(1), 54–75 (2017)CrossRefGoogle Scholar
  31. 31.
    Reyes, A., Suárez, H.: \(\sigma \)-PBW extensions of skew Armendariz rings. Adv. Appl. Clifford Algebras 27(4), 3197–3224 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Reyes, A., Suárez, H.: Enveloping algebra and skew Calabi–Yau algebras over skew Poincaré–Birkhoff–Witt extensions. Far East J. Math. Sci. (FJMS) 102(2), 373–397 (2017)zbMATHCrossRefGoogle Scholar
  33. 33.
    Reyes, A., Suárez, H.: A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argent. 59(1), 157–178 (2018)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Reyes, A., Suárez, H.: Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr. Algebra Geom. 60(2), 197–216 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Reyes, A., Suárez, Y.: On the ACCP in skew in skew Poincaré-Birkhoff-Witt extensions. Beitr. Algebra Geom. 59(4), 625–643 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Smoktunowicz, A.: Polynomial rings over nil rings need not be nil. J. Algebra 233(2), 427–436 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Suárez, H., Reyes, A.: A generalized Koszul property for skew PBW extensions. Far East J. Math. Sci. (FJMS) 101(2), 301–320 (2017)zbMATHCrossRefGoogle Scholar
  38. 38.
    Suárez, Y., Reyes, A.: Koszulity for skew PBW extensions over fields. JP J. Algebra Number Theory Appl. 39(2), 181–203 (2017)zbMATHCrossRefGoogle Scholar

Copyright information

© School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad Nacional de ColombiaSede BogotáColombia
  2. 2.Escuela de Matemáticas y EstadísticaUniversidad Pedagógica y Tecnológica de ColombiaSede TunjaColombia

Personalised recommendations