Advertisement

Benford or Not Benford: A Systematic But Not Always Well-Founded Use of an Elegant Law in Experimental Fields

  • Stéphane Blondeau Da SilvaEmail author
Article
  • 11 Downloads

Abstract

In this paper, we will propose a way to accurately model certain naturally occurring collections of data. Through this proposed model, the proportion of d as leading digit, \(d\in \llbracket 1,9\rrbracket \), in data is more likely to follow a law whose probability distribution is determined by a specific upper bound, rather than Benford’s Law, as one might have expected. These probability distributions fluctuate nevertheless around Benford’s values. These peculiar fluctuations have often been observed in the literature in such data sets (where the physical, biological or economical quantities considered are upper bounded). Knowing beforehand the value of this upper bound enables to find, through the developed model, a better adjusted law than Benford’s one.

Keywords

Benford’s Law Leading digit Experimental data 

Mathematics Subject Classification

60E05 

References

  1. 1.
    Beer, T.W.: Terminal digit preference: beware of Benford’s law. J. Clin. Pathol. 62(2), 192 (2009)CrossRefGoogle Scholar
  2. 2.
    Benford, F.: The law of anomalous numbers. Proc. Am. Philos. Soc. 78, 127–131 (1938)zbMATHGoogle Scholar
  3. 3.
    Burke, J., Kincanon, E.: Benford’s law and physical constants: the distribution of initial digits. Am. J. Phys. 59, 952 (1991)CrossRefGoogle Scholar
  4. 4.
    Costasa, E., Lopez-Rodasa, V., Torob, F., Flores-Moya, A.: The number of cells in colonies of the cyanobacterium microcystis aeruginosa satisfies benford’s law. Aquat. Bot. 89(3), 341–343 (2008)CrossRefGoogle Scholar
  5. 5.
    Deckert, J., Myagkov, M., Ordeshook, P.: Benford’s law and the detection of election fraud. Polit. Anal. 19, 245–268 (2011)CrossRefGoogle Scholar
  6. 6.
    Diekmann, A.: Not the first digit! Using benford’s law to detect fraudulent scientific data. J. Appl. Stat. 34(3), 321–329 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Friar, J.L., Goldman, T., Pérez-Mercader, J.: Genome sizes and the Benford distribution. Plos One 7(5), e36624 (2012)CrossRefGoogle Scholar
  8. 8.
    Gauvrit, N., Delahaye, J.-P.: Pourquoi la loi de benford n’est pas mystérieuse. Mathématiques et Sciences Humaines 182(2), 7–15 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Golbeck, J.: Benford’s law applies to online social networks. Plos One 10(8), e0135169 (2015)CrossRefGoogle Scholar
  10. 10.
    Hill, T.: Random-number guessing and the first digit phenomenon. Psychol. Rep. 62(3), 967–971 (1988)CrossRefGoogle Scholar
  11. 11.
    Hill, T.: A statistical derivation of the significant-digit law. Stat. Sci. 10(4), 354–363 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Knuth, D.: The Art of Computer Programming 2. Addison-Wesley, New York (1969)zbMATHGoogle Scholar
  13. 13.
    Leemis, L., Schmeiser, B., Evans, D.: Survival distributions satisfying Benford’s Law. Am. Stat. 54(4), 236–241 (2000)MathSciNetGoogle Scholar
  14. 14.
    Newcomb, R.: Note on the frequency of use of the different digits in natural numbers. Am. J. Math. 4, 39–40 (1881)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nigrini, M., Miller, S.: Benford’s Law applied to hydrology data-results and relevance to other geophysical data. Math. Geol. 39(5), 469–490 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Nigrini, M., Wood, W.: Assessing the integrity of tabulated demographic data. 1995. PreprintGoogle Scholar
  17. 17.
    Nigrini, M.J.: I’ve got your number. J. Account. 187(5), 79–83 (1999)Google Scholar
  18. 18.
    Raimi, R.A.: The first digit problem. Am. Math. Mon. 83(7), 521–538 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rauch, B., Göttsche, M., Brälher, G., Engel, S.: Fact and fiction in EU-governmental economic data. Ger. Econ. Rev. 12(3), 243–255 (2011)CrossRefGoogle Scholar
  20. 20.
    Scott, P.D., Fasli, M.: Benford’s Law: an empirical investigation and a novel explanation. CSM technical report 349, University of Essex, 2001. https://cswww.essex.ac.uk/technical-reports/2001/CSM-349.pdf
  21. 21.
    Sehity, T., Hoelz, E., Kirchler, E.: Price developments after a nominal shock: Benford’s Law and psychological pricing after the euro introduction. Int. J. Res. Market. 22(4), 471–480 (2005)CrossRefGoogle Scholar
  22. 22.
    Tödter, K.: Benford’s Law as an indicator of fraud in economics. Ger. Econ. Rev. 10, 339–351 (2009)CrossRefGoogle Scholar
  23. 23.
    Tolle, C., Budzien, J., Laviolette, R.: Do dynamical systems follow Benford’s law? Chaos 10(2), 331–336 (2000)CrossRefGoogle Scholar
  24. 24.
    Van Rossum, G.: Python tutorial, volume Technical Report CS-R9526. 1995. Centrum voor Wiskunde en Informatica (CWI)Google Scholar
  25. 25.
    Varian, H.: Benford’s Law (letters to the editor). Am. Stat. 26(3), 62–65 (1972)CrossRefGoogle Scholar

Copyright information

© School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.XLIM-MathisUMR no 7252 CNRS-Université de LimogesLimogesFrance

Personalised recommendations