Recovery of Sharp Features in Mesh Models

  • Zhao Liu
  • Maodong Pan
  • Zhouwang Yang
  • Jiansong DengEmail author


Due to the shortages of current methods for the recovery of sharp features of mesh models with holes, this paper presents two novel algorithms for the recovery of features (especially sharp features) in mesh models. One algorithm defines an energy that is regarded as the difference between the initial features and the ideal features. The optimal solution of the energy optimization problem modifies the initial features. The algorithm has good performance on sharp features. The other method establishes a plane cluster for each initial feature point to obtain a corresponding modified feature point. If necessary, we can obtain the modified feature line by fitting these modified points. Both methods depend little on the result of filling model holes and result in better features, which maintain the sharp geometric characteristic and the smoothness of the model. The experimental results of the two algorithms demonstrate their superiority and rationality compared with the existing methods.


Hole repair Sharp feature Mesh models 

Mathematics Subject Classification




The authors are supported by a NKBRPC(2011CB302400), the National Natural Science Foundation of China (11171322 and 11371341), and the 111 Project (No. b07033).


  1. 1.
    Attene, M., Falcidieno, B.: Remesh: an interactive environment to edit and repair triangle meshes. In: IEEE International Conference on Shape Modeling and Applications, 2006 (SMI 2006), pp. 41–41 (2006)Google Scholar
  2. 2.
    Attene, M., Falcidieno, B., Rossignac, J., Spagnuolo, M.: Edge-sharpener: recovering sharp features in triangulations of non-adaptively re-meshed surfaces. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 62–69. Eurographics Association, June (2003)Google Scholar
  3. 3.
    Attene, M., Falcidieno, B., Rossignac, J., Spagnuolo, M.: Sharpen&bend: recovering curved sharp edges in triangle meshes produced by feature-insensitive sampling. IEEE Trans. Vis. Comput. Graph. 11(2), 181–192 (2005)CrossRefGoogle Scholar
  4. 4.
    Avron, H., Sharf, A., Greif, C., Cohen-Or, D.: L1-sparse reconstruction of sharp point set surfaces. ACM Trans. Graph. (TOG) 29(5), 135 (2010)CrossRefGoogle Scholar
  5. 5.
    Barequet, G., Kumar, S.: Repairing cad models. In: IEEE Visualization ’97, pp. 363–370 (1997)Google Scholar
  6. 6.
    Barequet, G., Sharir, M.: Filling gaps in the boundary of a polyhedron. Comput. Aided Geom. Des. 12(2), 207–229 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Biermann, H., Martin, I.M., Zorin, D., Bernardini, F.: Sharp features on multiresolution subdivision surfaces. Graph. Models 64(2), 61–77 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Chen, C.-Y., Cheng, K.-Y., Liao, H.M.: A sharpness dependent approach to 3d polygon mesh hole filling. In: Proceedings of EuroGraphics, pp. 13–16 (2005)Google Scholar
  9. 9.
    Daniels, J., Ha, L.K., Ochotta, T., Silva, C.T.: Robust smooth feature extraction from point clouds. In: IEEE International Conference on Shape Modeling and Applications, 2007 (SMI’07), pp. 123–136 (2007)Google Scholar
  10. 10.
    Davis, J., Marschner, S.R., Garr, M., Levoy, M.: Filling holes in complex surfaces using volumetric diffusion. In: IEEE Proceedings, First International Symposium on 3D Data Processing Visualization and Transmission, 2002, pp. 428–441 (2002)Google Scholar
  11. 11.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, pp. 317–324, August (1999)Google Scholar
  12. 12.
    Fleishman, S., Cohen-Or, D., Silva, C.T.: Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 24(3), 544–552 (2005)CrossRefGoogle Scholar
  13. 13.
    Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)CrossRefGoogle Scholar
  14. 14.
    Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 99–108. ACM (1996)Google Scholar
  15. 15.
    Huang, H., Wu, S., Gong, M., Cohen-Or, D., Ascher, U., Zhang, H.R.: Edge-aware point set resampling. ACM Trans. Graph. (TOG) 32(1), 9 (2013)CrossRefGoogle Scholar
  16. 16.
    Hubeli, A., Gross, M.: Multiresolution feature extraction for unstructured meshes. IEEE Vis. 2001, 287–294 (2001)Google Scholar
  17. 17.
    Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. 22(3), 943–949 (2003)CrossRefGoogle Scholar
  18. 18.
    Ju, T.: Robust repair of polygonal models. ACM Trans. Graph. 23(3), 888–895 (2004)CrossRefGoogle Scholar
  19. 19.
    Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. ACM Trans. Graph. 21(3), 339–346 (2002)CrossRefGoogle Scholar
  20. 20.
    Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.-P.: Feature sensitive surface extraction from volume data. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Computer Graphics Proceedings, Annual Conference Series, pp. 57–66. ACM August (2001)Google Scholar
  21. 21.
    Lai, Y.-K., Zhou, Q.-Y., Hu, S.-M., Wallner, J., Pottmann, H.: Robust feature classification and editing. IEEE Trans. Vis. Comput. Graph. 13(1), 34–45 (2007)CrossRefGoogle Scholar
  22. 22.
    Liepa, P.: Filling holes in meshes. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 200–205. Eurographics Association, June (2003)Google Scholar
  23. 23.
    Lipman, Y., Cohen-Or, D., Levin, D.: Data-dependent mls for faithful surface approximation. In: Fifth Eurographics Symposium on Geometry Processing, pp. 59–68, July (2007)Google Scholar
  24. 24.
    Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Vis. Comput. Graph. 9(2), 191–205 (2003)CrossRefGoogle Scholar
  25. 25.
    Sharf, A., Alexa, M., Cohen-Or, D.: Context-based surface completion. ACM Trans. Graph. 23(3), 878–887 (2004)CrossRefGoogle Scholar
  26. 26.
    Sun, X., Rosin, P., Martin, R., Langbein, F.: Fast and effective feature-preserving mesh denoising. IEEE Trans. Vis. Comput. Graph. 13(5), 925–938 (2007)CrossRefGoogle Scholar
  27. 27.
    Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference Series, pp. 351–358, August (1995)Google Scholar
  28. 28.
    Wang, C.C.: Bilateral recovering of sharp edges on feature-insensitive sampled meshes. IEEE Trans. Vis. Comput. Graph. 12(4), 629–639 (2006)CrossRefGoogle Scholar
  29. 29.
    Wang, R., Yang, Z., Liu, L., Deng, J., Chen, F.: Decoupling noises and features via weighted l1-analysis compressed sensing. ACM Trans. Graph. 33(2), 1–12 (2014). Article 18zbMATHCrossRefGoogle Scholar
  30. 30.
    Wang, X., Liu, X., Lu, L., Li, B., Cao, J., Yin, B., Shi, X.: Automatic hole-filling of cad models with feature-preserving. Comput. Graph. 36(2), 101–110 (2012)CrossRefGoogle Scholar
  31. 31.
    Watanabe, K., Belyaev, A.G.: Detection of salient curvature features on polygonal surfaces. Comput. Graph. Forum 20(3), 385–392 (2001)CrossRefGoogle Scholar
  32. 32.
    Yagou, H., Ohtake, Y., Belyaev, A.: Mesh smoothing via mean and median filtering applied to face normals. In: IEEE Proceedings of the Geometric Modeling and Processing, 2002, pp. 124–131 (2002)Google Scholar

Copyright information

© School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zhao Liu
    • 1
  • Maodong Pan
    • 1
  • Zhouwang Yang
    • 1
  • Jiansong Deng
    • 1
    Email author
  1. 1.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations