Advertisement

Nonlinear Model Predictive Control of Reentry Vehicles Based on Takagi-Sugeno Fuzzy Models

  • Benjamin W. L. MargolisEmail author
  • Mohammad A. Ayoubi
  • Sanjay S. Joshi
Article
  • 17 Downloads

Abstract

In this paper, we apply a discrete-time Takagi-Sugeno Fuzzy Model (TSFM) based model predictive controller (MPC) to a Martian aerocapture vehicle following an arbitrary trajectory. We compare two baseline controllers: a continuous-time TSFM based parallel distributed controller (PDC) and a finite-horizon linear quadratic regulator (LQR). We evaluate the change in velocity (ΔV) required to bring the orbit of the controlled exit conditions to the orbit of the reference trajectory exit conditions over a range of initial condition errors and perturbations to atmospheric density. The LQR controller was least robust but performed best in a smaller range of perturbations. The PDC controller was most robust but performed the worst. The MPC based controllers demonstrate a balance of robustness and performance.

Keywords

Model predictive control Takagi-Sugeno fuzzy model Tracking control 

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1650042.

Compliance with Ethical Standards

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Baranyi, P., Yam, Y., Várlaki, P.: Tensor Product Model Transformation in Polytopic Model-Based Control. CRC Press (2013)Google Scholar
  2. 2.
    Bharadwaj, S., Rao, A.V., Mease, K.D.: Entry trajectory tracking law via feedback linearization. J. Guid. Control Dyn. 21(5), 726–732 (1998).  https://doi.org/10.2514/2.4318 CrossRefGoogle Scholar
  3. 3.
    Boyd, S.P., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, vol. 15. SIAM (1994)Google Scholar
  4. 4.
    Bryson, A.E., Ho, Y.C.: Applied Optimal Control, Optimization, Estimation and Control. CRC Press (1975)Google Scholar
  5. 5.
    Cavallo, A., Ferrara, F.: Atmospheric re-entry control for low lift/drag vehicles. J. Guid. Control Dyn. 19(1), 47–53 (1996).  https://doi.org/10.2514/3.21578 CrossRefzbMATHGoogle Scholar
  6. 6.
    Cruz, M.I.: The aerocapture vehicle mission design concept. In: Conference on Advanced Technology for Future Space Systems, pp 195–201. American Institute of Aeronautics and Astronautics, Hampton (1979),  https://doi.org/10.2514/6.1979-893
  7. 7.
    Dai, J., Gao, A., Xia, Y.: Mars atmospheric entry guidance for reference trajectory tracking based on robust nonlinear compound controller. Acta Astronaut. 132, 221–229 (2017).  https://doi.org/10.1016/j.actaastro.2016.12.013 CrossRefGoogle Scholar
  8. 8.
    Dukeman, G.: Profile-following entry guidance using linear quadratic regulator theory. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, p 4457, Monterey (2002),  https://doi.org/10.2514/6.2002-4457
  9. 9.
    Eren, U., Prach, A., Koçer, B.B., Raković, S.V., Kayacan, E., Açıkmeşe, B.: Model predictive control in aerospace systems: Current state and opportunities. J. Guid. Control Dyn. 40(7), 1541–1566 (2017).  https://doi.org/10.2514/1.G002507 CrossRefGoogle Scholar
  10. 10.
    Kirk, D.E.: Optimal Control Theory: An Introduction. Prentice-Hall, Inc., Englewood Cliffs (1970)Google Scholar
  11. 11.
    Lu, P.: Entry guidance: A unified method. J. Guid. Control Dyn. 37(3), 713–728 (2014).  https://doi.org/10.2514/1.62605 CrossRefGoogle Scholar
  12. 12.
    Lu, P., Brunner, C.W., Stachowiak, S., Mendeck, G.F., Tigges, M., Cerimele, C.: Verification of a fully numerical entry guidance algorithm. J. Guid. Control Dyn. 40(2), 230–247 (2017).  https://doi.org/10.2514/1.G000327 CrossRefGoogle Scholar
  13. 13.
    Lu, P., Cerimele, C.J., Tigges, M.A., Matz, D.A.: Optimal aerocapture guidance. J. Guid. Control Dyn. 38(4), 553–565 (2015).  https://doi.org/10.2514/1.G000713 CrossRefGoogle Scholar
  14. 14.
    Margolis, B.W.L.: Simupy: A python framework for modeling and simulating dynamical systems. J. Open Source Softw. 2(17), 396 (2017).  https://doi.org/10.21105/joss.00396 CrossRefGoogle Scholar
  15. 15.
    Margolis, B.W.L., Ayoubi, M.A.: Model predictive control of planetary aerocapture using Takagi-Sugeno fuzzy model. In: 26th AAS/AIAA Space Flight Mechanics Meeting. AAS/AIAA, Napa (2016)Google Scholar
  16. 16.
    Masciarelli, J., Queen, E.: Guidance algorithms for aerocapture at titan. In: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, Huntsville (2003),  https://doi.org/10.2514/6.2003-4804
  17. 17.
    Masciarelli, J., Rousseau, S., Fraysse, H., Perot, E.: An analytic aerocapture guidance algorithm for the mars sample return orbiter. In: Atmospheric Flight Mechanics Conference. American Institute of Aeronautics and Astronautics, Denver (2000),  https://doi.org/10.2514/6.2000-4116
  18. 18.
    Miele, A.: The 1st John V. Breakwell memorial lecture: Recent advances in the optimization and guidance of aeroassisted orbital transfers. Acta Astronaut. 38(10), 747–768 (1996).  https://doi.org/10.1016/S0094-5765(96)00076-8 CrossRefGoogle Scholar
  19. 19.
    Mollov, S., Babuška, R., Abonyi, J., Verbruggen, H.B.: Effective optimization for fuzzy model predictive control. IEEE Trans. Fuzzy Syst. 12(5), 661–675 (2004).  https://doi.org/10.1109/TFUZZ.2004.834812 CrossRefGoogle Scholar
  20. 20.
    Oviedo, J.J.E., Vandewalle, J.P., Wertz, V.: Fuzzy Logic, Identification and Predictive Control. Springer Science & Business Media (2006)Google Scholar
  21. 21.
    Powell, R.W., Braun, R.D.: Six-degree-of-freedom guidance and control analysis of mars aerocapture. J. Guid. Control Dyn. 16(6), 1038–1044 (1993).  https://doi.org/10.2514/3.21125 CrossRefGoogle Scholar
  22. 22.
    Sarigul-Klijn, N., D’Souza, S.N.: Survey of planetary entry guidance algorithms. Progress Aerosp. Sci. 68, 64–74 (2014).  https://doi.org/10.1016/j.paerosci.2014.01.002 CrossRefGoogle Scholar
  23. 23.
    Striepe, S.A., Queen, E.M., Powell, R.W., Braun, R.D., Cheatwood, F., Aguirre, J.T., Sachi, L.A., Lyons, D.T.: An atmospheric guidance algorithm testbed for the mars surveyor program 2001 orbiter and lander. In: 23rd Atmospheric Flight Mechanics Conference, pp 98–4569, Boston (1998),  https://doi.org/10.2514/6.1998-4569
  24. 24.
    Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis. Wiley (2001)Google Scholar
  25. 25.
    Taniguchi, T., Tanaka, K., Yamafuji, K., Wang, H.O.: A new pdc for fuzzy reference models. In: Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE’99. 1999 IEEE International. IEEE (1999),  https://doi.org/10.1109/FUZZY.1999.793071
  26. 26.
    Ulrich, S., de Lafontaine, J.: Autonomous atmospheric entry on mars: Performance improvement using a novel adaptive control algorithm. J. Astronaut. Sci. 55(4), 431–449 (2007).  https://doi.org/10.1007/BF03256534 CrossRefGoogle Scholar
  27. 27.
    Vinh, N.X., Busemann, A., Culp, R.D.: Hypersonic and Planetary Entry Flight Mechanics. University of Michigan Press (1980)Google Scholar
  28. 28.
    Walberg, G.D.: A survey of aeroassisted orbit transfer. J. Spacecr. Rocket. 22 (1), 3–18 (1985).  https://doi.org/10.2514/3.25704 CrossRefGoogle Scholar
  29. 29.
    Webb, K.D., Lu, P.: Entry guidance by onboard trajectory planning and tracking. In: AIAA Atmospheric Flight Mechanics Conference, San Diego (2016),  https://doi.org/10.2514/6.2016-0279
  30. 30.
    Xia, Y., Chen, R., Pu, F., Dai, L.: Active disturbance rejection control for drag tracking in mars entry guidance. Adv. Space Res. 53(5), 853–861 (2014).  https://doi.org/10.1016/j.asr.2013.12.008 CrossRefGoogle Scholar

Copyright information

© American Astronautical Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Department of Mechanical EngineeringSanta Clara UniversitySanta ClaraUSA

Personalised recommendations