Advertisement

The Journal of the Astronautical Sciences

, Volume 66, Issue 4, pp 537–553 | Cite as

Immersion-and Invariance-Based Adaptive Control of Asteroid-Orbiting and - Hovering Spacecraft

  • Keum W. Lee
  • Sahjendra N. SinghEmail author
Article

Abstract

The development of an immersion-and invariance-based adaptive state variable feedback control law for the closed orbit and hovering control of spacecraft in the vicinity of asteroids is the subject of this paper. The celestial body is assumed to be rotating with constant angular velocity about a fixed axis. Also, it is assumed that the mass and moments of inertia matrix of the asteroid, and the mass of the spacecraft are not known. The objective is to control the orbit of the spacecraft despite uncertainties in the system parameters. Based on the immersion and invariance theory, a noncertainty-equivalence adaptive control system is designed for steering the spacecraft along prescribe closed orbits or to fixed points for hovering control. The control system has a modular structure - consisting of an stabilizing control module and an parameter identifier. The control law is synthesized using filtered signals so as to circumvent the complexity of the immersion and immersion methodology. Unlike certainty-equivalence systems, the parameter estimates include judiciously selected nonlinear state-dependent algebraic functions and partial estimates derived from an integral update law. By the Lyapunov analysis, it is shown that the trajectory tracking error asymptotically converges to zero and all the signals in the closed-loop system are bounded. For illustration, numerical results are presented for control around 433 Eros and Ida asteroids. These results show that, despite uncertainties in the relative spacecraft dynamics, the adaptive law accomplishes closed orbit as well as hovering control.

Keywords

Adaptive spacecraft control Asteroid orbiting spacecraft Noncertainty equivalence adaptive control Design via immersion and invariance asteroid Hovering spacecraft control Nonlinear adaptive control 

Notes

References

  1. 1.
    Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representation of asteroid 4769 castalia. Celest. Mech. Dyn. Astron. 65, 313–344 (1997)CrossRefGoogle Scholar
  2. 2.
    Herrera-Sucarrat, E., Palmer, P.L., Roberts, R.M.: Modeling the gravitational potential of a nonspherical asteroid. J. Guidance Control Dyn. 36(3), 790–798 (2013)CrossRefGoogle Scholar
  3. 3.
    Chauvineau, B., Farinella, P., Mignard, F.: Planar orbits about a triaxial body: Application to asteroidal satellites. Icarus 105(2), 370–384 (1993)CrossRefGoogle Scholar
  4. 4.
    Scheeres, D.J.: Dynamics about uniformly rotating ellipsoids: applications to asteroids. Iracuse 110, 225–238 (1994)Google Scholar
  5. 5.
    Scheeres, D.J., Williams, B.G., Miller, J.K.: Evaluation of the dynamic environment of an asteroid: applications to 433 eros. J. Guid. Control Dyn. 23(3), 466–475 (2000)CrossRefGoogle Scholar
  6. 6.
    Tricarico, P., Sykes, M.V.: The dynamical environment of dawn at vesta. Planet. Space Sci. 58, 1516–1525 (2010)CrossRefGoogle Scholar
  7. 7.
    Wie, B.: Space vehicle guidance, control, and astrodynamics. AIAA, Inc, Reston (2015)CrossRefGoogle Scholar
  8. 8.
    Misra, A.K.: Panchenko attitude dynamics of satellites orbiting an asteroid. J. Astronaut. Sci. 54(3 &4), 369–381 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kumar, K.D.: Attitude dynamics and control of satellites orbiting rotating asteroids. Acta Mech. 198(12), 99–118 (2008)CrossRefGoogle Scholar
  10. 10.
    Broschart, S.B., Scheeres, D.J.: Boundedness of spacecraft hovering under dead-band control in time-invariant systems. J. Guid. Control Dyn. 30(2), 601–610 (2007)CrossRefGoogle Scholar
  11. 11.
    Yang, H.: Baoyin fuel-optimal control for soft landing on an irregular asteroid. IEEE Trans. Aerosp. Electron. Syst. 51(3), 1688–16907 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nazari, M., Wauson, R., Critz, T., Butcher, E.A., Scheeres, D.J.: Observer-based body-frame hovering control over a tumbling asteroid. Acta Astronautica 102, 124–139 (2014)CrossRefGoogle Scholar
  13. 13.
    Guelman, M.: Closed-loop control of close orbits around asteroids. J. Guidance Control Dyn. 38(5), 854–860 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Guelman, M.: Closed-loop control for global coverage and equatorial hovering about an asteroid. Acta Astronaut. 137, 353–361 (2017)CrossRefGoogle Scholar
  15. 15.
    Furfaro, R., Cersosimo, D., Wibben, D.R.: Asteroid precision landing via multiple sliding surfaces guidance techniques. J. Guid. Control Dyn. 36(4), 1075–1092 (2013)CrossRefGoogle Scholar
  16. 16.
    Furfaro, R.: Hovering in asteroid dynamic environments using higher-order sliding control. J. Guid. Control Dyn. 38(2), 263–279 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yang, H., Bai, X.: Baoyin finite-time control for asteroid hovering and landing via terminal sliding-mode control. Acta Astronautica. 132, 78–89 (2017)CrossRefGoogle Scholar
  18. 18.
    Gui, H., Ruiter, A.H.J.: Control of asteroid-hovering spacecraft with disturbance rejection using position-only measurements. J. Guidance Control Dyn. 40(10), 2401–2416 (2017)CrossRefGoogle Scholar
  19. 19.
    Wang, Y., Xu, S.: Body-fixed orbit-attitude hovering control over an asteroid using non-canonical Hamiltonian structure. Acta Astronaut. 117, 450–468 (2015)CrossRefGoogle Scholar
  20. 20.
    Lee, D., Sanyal, A.K., Butcher, E.A., Scheeres, D.J.: Almost global asymptotic tracking control for spacecraft body-fixed hovering over an asteroid. Aerosp. Sci. Technol. 38, 105–115 (2014)CrossRefGoogle Scholar
  21. 21.
    Lee, D., Sanyal, A.K., Butcher, E.A., Scheeres, D.J.: Finite-time control for spacecraft body-fixed hovering over an asteroid. IEEE Trans. Aerosp. Electron. 51(1), 506–518 (2015)CrossRefGoogle Scholar
  22. 22.
    Lee, D., Vukovich, G.: Adaptive sliding mode control for spacecraft body-fixed hovering in proximity of an asteroid. Aerosp. Sci. Technol. 46, 471–483 (2015)CrossRefGoogle Scholar
  23. 23.
    Vukovich, G., Gui, H.: Robust adaptive tracking of rigid-body motion with application to asteroid proximity operations. IEEE Trans. Aerosp. Electron. Syst. 53 (1), 419–430 (2017)CrossRefGoogle Scholar
  24. 24.
    Krstic, M., Kanellakopoulos, Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)zbMATHGoogle Scholar
  25. 25.
    Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications. Springer, London (2008)CrossRefGoogle Scholar
  26. 26.
    Seo, D., Akella, M.R.: High-performance spacecraft adaptive attitude-tracking control through attractive-manifold design. J. Guid., Contr., Dynamics 31(4), 884–891 (2008)CrossRefGoogle Scholar
  27. 27.
    Lee, K.W., Singh, S.N.: Noncertainty-equivalence spacecraft adaptive formation control with filtered signals. J. Aerosp. Eng. 30(5), 04017029 (2017). (12 pages)CrossRefGoogle Scholar
  28. 28.
    Schub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. American Institute of Aeronautics and Astronautics, VA (2003)Google Scholar

Copyright information

© American Astronautical Society 2019

Authors and Affiliations

  1. 1.Department of Electronic EngineeringCatholic Kwandong UniversityGangwonRepublic of Korea
  2. 2.Department of Electrical and Computer EngineeringUniversity of Nevada Las VegasLas VegasUSA

Personalised recommendations