Advertisement

Exploiting Orbital Data and Observation Campaigns to Improve Space Debris Models

  • Vitali BraunEmail author
  • André Horstmann
  • Benedikt Reihs
  • Stijn Lemmens
  • Klaus Merz
  • Holger Krag
Article
  • 26 Downloads

Abstract

The European Space Agency (ESA) has been developing the Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) software as the European reference model for space debris for more than 25 years. It is an event-based simulation of all known individual debris-generating events since 1957, including breakups, solid rocket motor firings and nuclear reactor core ejections. In 2014, the upgraded version of the Debris Risk Assessment and Mitigation Analysis (DRAMA) tool suite was released. In the same year an ESA instruction made the standard ISO 24113:2011 on space debris mitigation requirements, adopted via the European Cooperation for Space Standardization (ECSS), applicable to all ESA missions. In order to verify the compliance of a space mission with those requirements, the DRAMA software is used to assess collision avoidance statistics, estimate the remaining orbital lifetime and evaluate the on-ground risk for controlled and uncontrolled re-entries. In this paper, the approach to validate the MASTER and DRAMA tools is outlined. For MASTER, recent observation campaign results shall be discussed. In DRAMA, the assessment of collision avoidance statistics is based on orbit uncertainty information derived from Conjunction Data Messages (CDM) provided by the Joint Space Operations Center (JSpOC). The way this information is going to be used in a future DRAMA version is outlined and the comparison of estimated manoeuvre rates with real manoeuvres from the operations of ESA spacecraft is shown.

Keywords

MASTER DRAMA Space debris Model validation 

Notes

References

  1. 1.
    Alfano, S, Oltrogge, D.: Volumetric encounter analysis enhancements. In: Astrodynamics Specialist Conference. Vail (2015)Google Scholar
  2. 2.
    Anon: European code of conduct for space debris mitigation. Issue 1.0 (2004)Google Scholar
  3. 3.
    Anon: French Space Operations Act. 2008-518 (2008)Google Scholar
  4. 4.
    Braun, V, Flohrer, T, Krag, H, Merz, K, Lemmens, S, Bastida Virgili, B, Funke, Q.: Operational support to collision avoidance activities by ESA’s space debris office. CEAS Space J. 8(3), 177–189 (2016).  https://doi.org/10.1007/s12567-016-0119-3 CrossRefGoogle Scholar
  5. 5.
    Bunte, K D, Destefanis, R, Drolshagen, G.: Spacecraft shielding layout and optimisation using ESABASE2/Debris. In: 5th European Conference on Space Debris, Darmstadt (2009)Google Scholar
  6. 6.
    European Cooperation for Space Standardization (ECSS): Space engineering - Space environment. ECSS-E-ST-10-04C (2008)Google Scholar
  7. 7.
    European Cooperation for Space Standardization (ECSS): Adoption Notice of ISO 24113: Space systems - Space debris mitigation requirements. ECSS-U-AS-10C (2012)Google Scholar
  8. 8.
    Flegel, S., Gelhaus, J., Möckel, M.: Maintenance of the ESA MASTER model. Final Report, ESA contract 21705/08/D/HK (2011)Google Scholar
  9. 9.
    Flegel, S.K.: Multi-layer insulation as contribution to orbital debris. Dissertation, Technische Universität Braunschweig (2013)Google Scholar
  10. 10.
    Flohrer, T., Krag, H., Klinkrad, H.: Assessment and categorization of TLE orbit errors for the US SSN catalogue. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. AMOS, Maui (2008)Google Scholar
  11. 11.
    Foster, J.L.: A parametric analysis of orbital debris collision probability and maneuver rate for space vehicles. NASA JSC-25898 (1992)Google Scholar
  12. 12.
    Gelhaus, J., Kebschull, C., Braun, V., Sánchez-Ortiz, N., Parrilla Endrino, E., Correia de Oliveira, J., Domínguez González, R.: Upgrade of ESA’s space debris mitigation analysis tool suite. Final Report, ESA contract 4000104977/11/D/SR (2014)Google Scholar
  13. 13.
    International Organization for Standardization (ISO): Space systems—space debris mitigation requirements. ISO 24113:2011 (2011)Google Scholar
  14. 14.
    Johnson, N., Krisko, P., Liou, J.C., Anz-Meador, P.: Nasa’s new breakup model of evolve 4.0. Adv. Space Res. 28(9), 1377–1384 (2001)CrossRefGoogle Scholar
  15. 15.
    Klinkrad, H.: Monitoring space–efforts made by european countries. In: International Colloquium on Europe and Space Debris, sponsored by the Académie National de l’Air et de l’Espace. Toulouse (2002)Google Scholar
  16. 16.
    Klinkrad, H., Bendisch, J., Sdunnus, H., Wegener, P., Westerkamp, R.: An introduction to the 1997 ESA MASTER Model. In: Second European Conference on Space Debris, Darmstadt (1997)Google Scholar
  17. 17.
    Krisko, P: Proper implementation of the 1998 NASA breakup model. Orbital Debris Quarterly News 15(4) (2011)Google Scholar
  18. 18.
    Krisko, P., Foster, J.: Modeling the sodium potassium droplet interactions with the low earth orbit space debris environment. Acta Astronaut. 60(10), 939–945 (2007)CrossRefGoogle Scholar
  19. 19.
    Markkanen, J., Lehtinen, M., Landgraf, M.: Real-time space debris monitoring with EISCAT. Adv. Space Res. 35(7), 1197–1209 (2005)CrossRefGoogle Scholar
  20. 20.
    Martin, C., Cheese, J., Sánchez-Ortiz, N., Bunte, K.H., Klinkrad, H., Lips, T., Fritsche, B.: Debris risk assessment and mitigation analysis (DRAMA) Tool. Final Report, ESA contract 16966/02/D/HK (2005)Google Scholar
  21. 21.
    Peterson, G., Gist, R., Oltrogge, D.: Covariance generation for space objects using public data. In: AAS/AIAA Space Flight Mechanics Meeting. Santa Barbara (2001)Google Scholar
  22. 22.
    Schildknecht, T., Musci, R., Ploner, M., Preisig, S., de Leon Cruz, J., Krag, H.: Optical observation of space debris in the geostationary ring. In: Space Debris, vol. 473, pp 89–93 (2001)Google Scholar
  23. 23.
    Stabroth, S., Oswald, M., Wiedemann, C., Klinkrad, H., Vörsmann, P.: Explanation of the “may swarm” signature in the ldef ide impact data. Aerosp. Sci. Technol. 11(2–3), 253–257 (2007)CrossRefGoogle Scholar
  24. 24.
    Stabroth, S., Flegel, S.K., Wiedemann, C., Vörsmann, P., Krag, H., Klinkrad, H.: Identification of solid rocket motor retro-burns in the LDEF IDE impact data. In: AIAA/AAS Astrodynamics Specialist Conference, Honolulu (2008)Google Scholar
  25. 25.
    The Consultative Committee for Space Data Systems (CCSDS): Conjunction Data Message, Recommended Standard. CCSDS 508.0-B-1, Blue Book (2013)Google Scholar
  26. 26.
    Wiedemann, C., Homeister, M., Oswald, M., Stabroth, S., Klinkrad, H., Vörsmann, P.: Additional historical solid rocket motor burns. Acta Astronaut. 64(11), 1276–1285 (2009).  https://doi.org/10.1016/j.actaastro.2009.01.011 CrossRefGoogle Scholar
  27. 27.
    Wiedemann, C., Gamper, E., Horstmann, A., Braun, V., Stoll, E.: Release of liquid metal droplets from Cosmos 1818 and 1867. In: IAC-16.A6.2.9, 67th International Astronautical Congress. IAC, Guadalajara (2016)Google Scholar
  28. 28.
    Wiedemann, C., Gamper, E., Horstmann, A., Braun, V., Stoll, E.: The contribution of NaK droplets to the space debris environment. In: Seventh European Conference on Space Debris, Darmstadt (2017)Google Scholar

Copyright information

© American Astronautical Society 2019

Authors and Affiliations

  1. 1.IMS Space Consultancy at Space Debris OfficeESA/ESOCDarmstadtGermany
  2. 2.Institute of Space SystemsTU BraunschweigBraunschweigGermany
  3. 3.Space Debris OfficeESA/ESOCDarmstadtGermany

Personalised recommendations