Advertisement

The Journal of the Astronautical Sciences

, Volume 65, Issue 4, pp 377–399 | Cite as

Volume Multi-Sphere-Model Development Using Electric Field Matching

  • Gabriel Ingram
  • Joseph HughesEmail author
  • Trevor Bennett
  • Christine Reilly
  • Hanspeter Schaub
Article

Abstract

Electrostatic actuation is the process of charging two spacecraft and using the resulting Coulomb interaction to exert touchless forces and torques between the two spacecraft. For all electrostatic actuation concepts, fast and accurate models for the electrostatic force and torque are needed. The Volume Multi-Sphere Method (VMSM) seeks the optimal placement and radii of a small number of equipotential spheres to accurately model the electrostatic force and torque on a conducting space object. Prior work optimized the VMSM models by varying the radii and position of the model spheres to match the force and torque produced by a finite element truth model. This process is challenging due to finite element model errors and smoothness considerations, as well as because the force solutions are dependent on the particular probe geometry chosen. This paper investigates fitting of VMSM models to Surface-MSM (SMSM) generated electrical field data, removing modeling dependence on probe geometry while significantly increasing performance and speed. A proposed electric field matching cost function is compared to a force and torque cost function. The inclusion of a self-capacitance constraint is explored and 4 degree-of-freedom VMSM models generated using electric field matching are investigated. The resulting E-field based VMSM development framework is illustrated on a box-shaped hub with a single solar panel. Despite the complex non-symmetric spacecraft geometry, elegantly simple 2-sphere VMSM solutions provide force and torque fits within a few percent.

Keywords

Electrostatics Proximity opperations Orbital debris 

Notes

Acknowledgment

This research is funded through a grant No. FA9550-15-1-0407 from the Air Force Office of Space Research.

References

  1. 1.
    Früh, C., Ferguson, D., Lin, C., Jah, M.: The effect of passive electrostatic charging on Near-Geosynchronous high Area-To-Mass ratio objects. Int. Astron. Congr. 64, 2094–2103 (2013)Google Scholar
  2. 2.
    Hughes, J., Schaub, H.: Rapid charged geosynchronous debris perturbation modeling of electrodynamic disturbances. J. Astronaut. Sci. 65(2), 135–156 (2018)CrossRefGoogle Scholar
  3. 3.
    Peck, M.A.: Prospects and Challenges for Lorentz-Augmented Orbits. In: AIAA Guidance, Navigation and Control Conference, San Francisco, CA. Paper No. AIAA 2005-5995 (2005)Google Scholar
  4. 4.
    Cover, J.H., Knauer, W., Maurer, H.A.: Lightweight reflecting structures utilizing electrostatic inflation. US Patent 3,546,706 (1966)Google Scholar
  5. 5.
    King, L.B., Parker, G.G., Deshmukh, S., Chong, J.-H.: Spacecraft Formation-Flying using Inter-Vehicle Coulomb Forces, tech. rep., NASA/NIAC. http://www.niac.usra.edu (2002)
  6. 6.
    Schaub H., Moorer, D.F.: Geosynchronous large debris reorbiter: challenges and prospects. J. Astronaut. Sci. 59(1–2), 161–176 (2014).  https://doi.org/10.1007/s40295-013-0011-8 Google Scholar
  7. 7.
    Chow, P., Hughes, J., Bennett, T., Schaub, H.: Automated Sphere Geometry Optimization for the Volume Multi-sphere Method, AAS/AIAA Space Flight Mechanics Meeting, No. AAS-16-672, Napa Valley, California (2016)Google Scholar
  8. 8.
    Paul, S.N., Frueh, C.: Space debris charging and its effect on orbit evolution. american institute of aeronautics and astronautics (2016)Google Scholar
  9. 9.
    Schaub H., Sternovsky, Z.: Active space debris charging for contactless electrostatic disposal maneuvers. In: 6th European Conference on Space Debris, Darmstadt, Germany, ESOC. Paper No. 6b.O-5 (2013)Google Scholar
  10. 10.
    Bennett, T., Stevenson, D., Hogan, E., McManus, L., Schaub, H.: Prospects And challenges of touchless debris despinning using electrostatics. Adv. Space Res. 56, 557–568 (2015).  https://doi.org/10.1016/j.asr.2015.03.037  https://doi.org/10.1016/j.asr.2015.03.037 CrossRefGoogle Scholar
  11. 11.
    Peck, M.A., Streetman, B., Saaj, C.M., Lappas, V.: Spacecraft formation flying using lorentz forces. J. Br. Interplanet. Soc. 60, 263–267 (2007)Google Scholar
  12. 12.
    Sobiesiak, L.A., Damaren, C.J.: Lorentz-Augmented Spacecraft formation reconfiguration. In: AIAA/AAS Astrodynamics Specialist Conference, San Diego, California (2014)Google Scholar
  13. 13.
    Streetman, B., Peck, M.A.: General bang-bang control method for lorentz augmented orbits. J. Spacecr. Rocket. 47, 484–492 (2010).  https://doi.org/10.2514/1.45704 CrossRefGoogle Scholar
  14. 14.
    Hogan, E.A., Schaub, H.: General high-altitude orbit corrections using electrostatic tugging with charge control. J. Guid. Control. Dyn. 28, 699–705 (2015).  https://doi.org/10.2514/1.G000092 CrossRefGoogle Scholar
  15. 15.
    Hogan, E., Schaub, H.: Relative motion control for Two-Spacecraft electrostatic orbit corrections. AIAA J. Guid. Control. Dyn. 36, 240–249 (2013)CrossRefGoogle Scholar
  16. 16.
    Bennett, T., Schaub, H.: Touchless electrostatic detumbling while tugging large axi-symmetric GEO Debris. In: AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, VA. Paper AAS 15-383 (2015)Google Scholar
  17. 17.
    Bennett, T., Schaub, H.: Touchless Electrostatic Three-Dimensional detumbling of large Axi-Symmetric debris, Journal of astronautical sciences (2015)Google Scholar
  18. 18.
    Schaub, H., Bennett, T., Hughes, J.: Current developments in three-dimensional electrostatic detumble of axi-symmetric GEO Debris. In: 4th International Workshop on Space Debris Modeling and Remediation, CNES, Paris. Paper No. 6.4 (2016)Google Scholar
  19. 19.
    Stevenson, D., Schaub, H.: Multi-Sphere Method for modeling electrostatic forces and torques. Adv. Space Res. 51, 10–20 (2013).  https://doi.org/10.1016/j.asr.2012.08.014 CrossRefGoogle Scholar
  20. 20.
    Stevenson, D.: Optimization of sphere population for electrostatic multi sphere model. In: 12th Spacecraft Charging Technology Conference, Kitakyushu, Japan (2012)Google Scholar
  21. 21.
    Smythe, W.R.: Static and Dynamic Electricity. McGraw–Hill 3rd ed. (1968)Google Scholar
  22. 22.
    Gibson, W.C.: The method of moments in electromagnetics. Chapman & hall (2007)Google Scholar
  23. 23.
    Lai, S.T.: Fundamentals of spacecraft charging: Spacecraft interactions with space plasmas. Princeton University Press (2011)Google Scholar
  24. 24.
    Bauer, R.: Distribution of points on a sphere with application to star catalogs. J. Guid. Control. Dyn. 23(1), 130–137 (2000)CrossRefGoogle Scholar
  25. 25.
    Schaub, H.: Faster-than-realtime Electrostatic Force and Torque Modeling for SSA Applications. AFOSR Annual Report, University of Colorado, Aerospace Engineering Sciences Department, Boulder, CO (2016)Google Scholar
  26. 26.
    Maxwell, J.: A treatise on electricity and magnetism. Oxford University Press (1893)Google Scholar
  27. 27.
    Lekner, J.: Electrostatics of two charged conducting spheres. Proc. R. Soc. 468, 2829–2848 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© American Astronautical Society 2018

Authors and Affiliations

  • Gabriel Ingram
    • 1
  • Joseph Hughes
    • 1
    Email author
  • Trevor Bennett
    • 1
  • Christine Reilly
    • 1
  • Hanspeter Schaub
    • 1
  1. 1.Department of Aerospace Engineering SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations