Advertisement

Solar Sail Transfers and Trajectory Design to Sun-Earth L4, L5: Solar Observations and Potential Earth Trojan Exploration

  • Rohan SoodEmail author
  • Kathleen Howell
Article

Abstract

The Sun-Earth triangular Lagrange point, L5, offers an ideal location to monitor the space weather. Furthermore, L4, L5 may harbor Earth ‘Trojan’ asteroids and space dust that are of significant interest to the scientific community. No spacecraft has, thus far, entered an orbit in the vicinity of Sun-Earth triangular points in part because of high propellant costs. By incorporating solar sail dynamics in the model representing CR3BP, the concept of a mission to L4, L5 can be re-evaluated and the total ΔV can be reconsidered. A solar sail is employed to increase the energy of the spacecraft and deliver the spacecraft to an orbit about an artificial Lagrange point by leveraging solar radiation pressure and, potentially, without any insertion ΔV.

Keywords

Multi-body dynamics Solar sail Sun-Earth triangular Lagrange points Solar radiation pressure Solar observations Earth Trojan asteroids 

Notes

References

  1. 1.
    Baoyin, H., Mcinnes, C.R.: Solar sail halo orbits at the Sun–Earth artificial L 1 point. Celest. Mech. Dyn. Astron. 94(2), 155–171 (2006).  https://doi.org/10.1007/s10569-005-4626-3 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barden, B.T., Howell, K.C.: Fundamental motions near collinear libration points and their transitions. J. Astronaut. Sci. 46(4), 361–378 (1998)MathSciNetGoogle Scholar
  3. 3.
    Biddy, C., Svitek, T.: Lightsail-1 solar sail design and qualification. In: Proceedings of the 41st aerospace mechanisms symposium, pp. 451-463. Jet Propulsion Lab., National Aeronautics and Space Administration Pasadena, CA (2012)Google Scholar
  4. 4.
    Christou, A.A., Asher, D.J.: A long-lived horseshoe companion to the earth. Mon. Not. R. Astron. Soc. 414(4), 2965–2969 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18595.x CrossRefGoogle Scholar
  5. 5.
    Connors, M., Wiegert, P., Veillet, C.: Earth’s Trojan asteroid. Nature 475(7357), 481 (2011).  https://doi.org/10.1038/nature10233 CrossRefGoogle Scholar
  6. 6.
    Davis, J.: Lightsail test mission declared success; first image complete, the planetary society (2015)Google Scholar
  7. 7.
    Dvorak, R., Lhotka, C., Zhou, L.: The orbit of 2010 TK7: possible regions of stability for other Earth Trojan asteroids. Astron. Astrophys. 541, A127 (2012).  https://doi.org/10.1051/0004-6361/201118374 CrossRefGoogle Scholar
  8. 8.
    Gerard, G., Jaume, L., Martínez, R.: Dynamics and mission design near libration points-vol I: fundamentals: the case of collinear libration points, vol. 2 world scientific (2001)Google Scholar
  9. 9.
    Goodrich, E.F.: Numerical determination of short-period Trojan orbits in the restricted three-body problem. Astron. J. 71, 88 (1966).  https://doi.org/10.1086/109860 CrossRefGoogle Scholar
  10. 10.
    Gopalswamy, N., Davila, J., Cyr, O.S., Sittler, E., Auchère, F., Duvall, T., Hoeksema, J., Maksimovic, M., MacDowall, R., Szabo, A., Collier, M.: Earth-affecting solar causes observatory (EASCO): A potential international living with a star mission from sun-earth L5. J. Atmos. Solar-Terrestrial Phys. 73(5-6), 658–663 (2011).  https://doi.org/10.1016/j.jastp.2011.01.013 CrossRefGoogle Scholar
  11. 11.
    Gopalswamy, N., Davila, J.M., Auchère, F., Schou, J., Korendyke, C.M., Shih, A., Johnston, J.C., MacDowall, R.J., Maksimovic, M., Sittler, E., Szabo, A., Wesenberg, R., Vennerstrom, S., Heber, B.: Earth-affecting solar causes observatory (EASCO): a mission at the Sun-Earth L5. In: Fineschi, S., Fennelly, J. (eds.) Solar Physics and Space Weather Instrumentation IV. SPIE.  https://doi.org/10.1117/12.901538 (2011)
  12. 12.
    Grebow, D.: Generating periodic orbits in the circular restricted three-body problem with applications to lunar south pole coverage. MSAA Thesis, School of Aeronautics and Astronautics Purdue University (2006)Google Scholar
  13. 13.
    Heiligers, J., Hiddink, S., Noomen, R., McInnes, C.R.: Solar sail lyapunov and halo orbits in the earth–moon three-body problem. Acta Astronaut. 116, 25–35 (2015).  https://doi.org/10.1016/j.actaastro.2015.05.034 CrossRefGoogle Scholar
  14. 14.
    Heiligers, J., McInnes, C.: Novel Solar Sail Mission Concepts for Space Weather Forecasting. In: 24Th AAS/AIAA space flight mechanics meeting 2014, pp. AAS–14 (2014)Google Scholar
  15. 15.
    Howell, K.C.: Three-dimensional, periodic, ‘halo’ orbits. Celest. Mech. 32(1), 53–71 (1984).  https://doi.org/10.1007/bf01358403 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    John, K., Graham, L., Abell, P.: Investigating Trojan Asteroids at the L4/L5 sun-earth lagrange points. In: Lunar and planetary science conference, vol. 46, p. 2845 (2015)Google Scholar
  17. 17.
    Llanos, P., Miller, J., Hintz, G.: Mission and navigation design of integrated trajectories to L4,5 in the Sun-Earth system. In: AIAA/AAS Astrodynamics specialist conference. American institute of aeronautics and astronautics (2012),  https://doi.org/10.2514/6.2012-4668
  18. 18.
    Llanos, P.J., Hintz, G.R., Lo, M.W., Miller, J.K.: Powered Heteroclinic and Homoclinic Connections between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations. In: AAS/AIAA astrodynamics specialist conference, AAS, pp. 13–786 (2013)Google Scholar
  19. 19.
    Llanos, P.J., Miller, J.K., Hintz, G.R.: Navigation Analysis for an L5 Mission in the Sun-Earth System. In: AAS/AIAA Astrodynamicist specialist conference, Girdwood, vol. 142, pp. 11–503 (2011)Google Scholar
  20. 20.
    Lo, M.W., Llanos, P.J., Hintz, G.R.: An L5 Mission to Observe the Sun and Space Weather, Part I. In: AAS/AIAA Astrodynamicist Specialist Conference, San Diego, vol. 136, pp. 10–121 (2010)Google Scholar
  21. 21.
    Macdonald, M., McInnes, C.: Solar sail science mission applications and advancement. Adv. Space Res. 48(11), 1702–1716 (2011).  https://doi.org/10.1016/j.asr.2011.03.018 CrossRefGoogle Scholar
  22. 22.
    Markellos, V.V.: Asymmetric periodic orbits in three dimensions. Mon. Not. R. Astron. Soc. 184(2), 273–281 (1978).  https://doi.org/10.1093/mnras/184.2.273 CrossRefzbMATHGoogle Scholar
  23. 23.
    McInnes, C.: Solar Sailing. Technology dynamics and mission applications, vol. 1. Springer, London (1999)Google Scholar
  24. 24.
    McInnes, C.R., McDonald, A.J.C., Simmons, J.F.L., MacDonald, E.W.: Solar sail parking in restricted three-body systems. J. Guid. Control. Dyn. 17(2), 399–406 (1994).  https://doi.org/10.2514/3.21211 CrossRefzbMATHGoogle Scholar
  25. 25.
    Mori, O., Tsuda, Y., Sawada, H., Funase, R., Saiki, T., Yonekura, K., Hoshino, H., Minamino, H., Endo, T., Kawaguchi, J., et al.: World’s first demonstration of solar power sailing by IKAROS. In: Proceedings of 2nd International symposium on solar sailing (2010)Google Scholar
  26. 26.
    Ozimek, M.T., Grebow, D.J., Howell, K.C.: Design of solar sail trajectories with applications to lunar south pole coverage. J. Guid. Control. Dyn. 32(6), 1884–1897 (2009).  https://doi.org/10.2514/1.41963 CrossRefGoogle Scholar
  27. 27.
    Pavlak, T.A.: Trajectory design and orbit maintenance strategies in multi-body dynamical regimes. Ph.D. thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette IN (2013)Google Scholar
  28. 28.
    Pezent, J.B., Sood, R., Heaton, A.: Near Earth Asteroid (NEA) Scout Solar Sail Contingency Trajectory Design and Analysis. In: 2018 space flight mechanics meeting. American Institute of Aeronautics and Astronautics.  https://doi.org/10.2514/6.2018-0199 (2018)
  29. 29.
    Prado, A.F.: Orbital maneuvers between the lagrangian points and the primaries in the earth-sun system. J. Braz. Soc. Mech. Sci. Eng. 28(2), 131–139 (2006).  https://doi.org/10.1590/s1678-58782006000200001 CrossRefGoogle Scholar
  30. 30.
    Simo, J., McInnes, C.R.: Solar Sail Trajectories at the Earth-Moon Lagrange Points. In: 59Th International astronautical congress (2008)Google Scholar
  31. 31.
    Sood, R.: Solar sail applications for mission design in sun-planet systems from the perspective of the circular restricted three-body problem. Master’s thesis, Purdue University, West Lafayette, IN. ProQuest: AAI1535164 (2012)Google Scholar
  32. 32.
    Szebehely, V., Geyling, F.T.: Theory of orbits: The restricted problem of three bodies. J. Appl. Mech. 35(3), 624 (1968).  https://doi.org/10.1115/1.3601280 CrossRefGoogle Scholar
  33. 33.
    Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Yonekura, K., Hoshino, H., Kawaguchi, J.: Achievement of IKAROS — Japanese deep space solar sail demonstration mission. Acta Astronaut. 82(2), 183–188 (2013).  https://doi.org/10.1016/j.actaastro.2012.03.032 CrossRefGoogle Scholar
  34. 34.
    Vourlidas, A.: Mission to the sun-earth l5lagrangian point: an optimal platform for space weather research. Space Weather 13(4), 197–201 (2015).  https://doi.org/10.1002/2015sw001173 CrossRefGoogle Scholar
  35. 35.
    Waters, T.J., McInnes, C.R.: Periodic orbits above the ecliptic in the solar-sail restricted three-body problem. J. Guid. Control. Dyn. 30(3), 687–693 (2007).  https://doi.org/10.2514/1.26232 CrossRefGoogle Scholar
  36. 36.
    Wawrzyniak, G.G., Howell, K.C.: Generating solar sail trajectories in the Earth-Moon system using augmented finite-difference methods. Int. J. Aerosp. Eng. 2011, 1–13 (2011).  https://doi.org/10.1155/2011/476197 CrossRefGoogle Scholar
  37. 37.
    Wie, B.: Solar sail attitude control and dynamics, part two. J. Guid. Control. Dyn. 27(4), 536–544 (2004).  https://doi.org/10.2514/1.11133 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wright, J.L., Kantrowitz, A.: Space sailing. Phys. Today 45(12), 85–85 (1992).  https://doi.org/10.1063/1.2809919 CrossRefGoogle Scholar

Copyright information

© American Astronautical Society 2019

Authors and Affiliations

  1. 1.Department of Aerospace Engineering and MechanicsThe University of AlabamaTuscaloosaUSA
  2. 2.School of Aeronautics and Astronautics, Purdue UniversityWest LafayetteUSA

Personalised recommendations