The Journal of the Astronautical Sciences

, Volume 65, Issue 2, pp 183–204 | Cite as

Asteroid Redirection Mission Evaluation Using Multiple Landers

  • Michael C. F. Bazzocchi
  • M. Reza EmamiEmail author


In this paper, a low-thrust tugboat redirection method is assessed using multiple spacecraft for a target range of small near-Earth asteroids. The benefits of a landed configuration of tugboat spacecraft in formation are examined for the redirection of a near-Earth asteroid. The tugboat method uses a gimballed thruster with a highly collimated ion beam to generate a thrust on the asteroid. The target asteroid range focuses on near-Earth asteroids smaller than 150 m in diameter, and carbonaceous (C-type) asteroids, due to the volatiles available for in-situ utilization. The assessment focuses primarily on the three key parameters, i.e., the asteroid mass redirected, the timeframe for redirection, and the overall system cost. An evaluation methodology for each parameter is discussed in detail, and the parameters are employed to determine the expected return and feasibility of the redirection mission. The number of spacecraft employed is optimized along with the electrical power needed for each spacecraft to ensure the highest possible return on investment. A discussion of the optimization results and the benefits of spacecraft formation for the tugboat method are presented.


Asteroid redirection Asteroid resource exploitation Near-Earth asteroids 


  1. 1.
    Bazzocchi, M.C.F., Emami, M.R.: Comparative analysis of redirection methods for asteroid resource exploitation,. Acta Astronaut. 120, 1–19 (2016)CrossRefGoogle Scholar
  2. 2.
    Belton, M.J.S: Mitigation of Hazardous Asteroids and Comets. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  3. 3.
    Sanchez, J.P., McInnes, C.R.: Assessment on the feasibility of future shepherding of asteroid resources,. Acta Astronaut. 73, 49–66 (2012)CrossRefGoogle Scholar
  4. 4.
    Krasinsky, G.A., Pitjeva, E.V., Vasilyev, M.V., Yagudina, E.I.: Hidden mass in the asteroid belt. Icarus 158, 98–105 (2002)CrossRefGoogle Scholar
  5. 5.
    Pravec, P.: Fast and slow rotation of asteroids. Icarus 148, 12–20 (2000)CrossRefGoogle Scholar
  6. 6.
    MOOG Space and Defense Group: Electric Propulsion Thruster Gimbal Assemblies. Moog, Inc, Chatsworth (2014)Google Scholar
  7. 7.
    Nabors, S.: Gimbal for Steering Propelled CubeSats (NP-2017-06-2403-HQ). Marshall Space Flight Center, NASA, Huntsville (2017)Google Scholar
  8. 8.
    Bazzocchi, M.C.F., Emami, M.R.: An Assessment of Multiple Spacecraft Formation for Asteroid Redirection, Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 14, ists30, Pk_137-Pk_146 (2016)Google Scholar
  9. 9.
    Ulamec, S., Biele, J.: Surface elements and landing strategies for small bodies missions—Philae and beyond,. Adv. Space Res. 44, 847–858 (2009)CrossRefGoogle Scholar
  10. 10.
    Bibrings, J.P., et al: The Rosetta lander (Philae) investigations. Space Sci. Rev. 128, 205–220 (2007)CrossRefGoogle Scholar
  11. 11.
    National Space Science Data Center: Philae. NASA, NSSDC ID: 2004-006C (2004)Google Scholar
  12. 12.
    Biele, J., Ulamec, S., Maibaum, M., Roll, R., Witte, L., Jurado, E., Munoz, P., Arnold, W., Auster, H.-U., Casas, C., Faber, C., Fantinati, C., Finke, F., Fischer, H.-H., Geurts, K., Guttler, C., Heinisch, P., Herique, A., Hviid, S., Kargl, G., Knapmeyer, M., et al.: The landing(s) of Philae and inferences about comet surface mechanical properties. Science 349(6247), aaa9816-1–aaa9816-6 (2015)CrossRefGoogle Scholar
  13. 13.
    Sonter, M.J.: The technical and economic feasibility of mining the near-Earth asteroids. Acta Astronaut. 41(4–10), 637–647 (1998)Google Scholar
  14. 14.
    Schwab, B., Lusztig, P.: A comparative analysis of the net present value and the benefit-cost ratio as measures of the economic desirability of investments. J. Financ. 24(3), 507–516 (1969)CrossRefGoogle Scholar
  15. 15.
    MathWorks: Genetic Algorithm. [Online]. Available: Accessed 30 Jan 2016 (2015)
  16. 16.
    Wie, B.: Dynamics and control of gravity tractor spacecraft for asteroid deflection. J. Guid. Control. Dyn. 31(5), 1413–1423 (2008)CrossRefGoogle Scholar
  17. 17.
    Bombardelli, C., Urrutxua, H., Merino, M.P.J., Ahedo, E.: The ion beam shepherd: a new concept for asteroid deflection. Acta Astronaut. 90, 98–102 (2013)CrossRefGoogle Scholar
  18. 18.
    Bombardelli, C., Pelaez, J.: Ion beam shepherd for asteroid deflection. J. Guid. Control. Dyn. 34(4), 1270–1272 (2011)CrossRefGoogle Scholar
  19. 19.
    Goebel, D.M., Katz, I.: Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  20. 20.
    Wertz, J.R., Everett, D.F., Puschell, J.J.: Space Mission Engineering: The New SMAD. Microcosm Press, Hawthorne (2011)Google Scholar
  21. 21.
    Williams, J.G.J., Hickman, T.A., Haag, T.W., Foster, J.E., Patterson, M.J.: Preliminary Wear Analysis Following a 2000 h Wear Test of the HiPEP Ion Thruster. Princeton (2005)Google Scholar
  22. 22.
    NASA: Cost Analysis Division Publications - FY14 NASA New Start Inflation Indices (NNSI), 01 01 2015. [Online]. Available: Accessed 30 Jan 2016
  23. 23.
    Klavins, E: Communicaton complexity of multi-robot systems. In: Algorithmic Foundations of Robotics V, Springer, Berlin, pp. 275–291 (2004)Google Scholar
  24. 24.
    Delionback, L.M.: Guidelines for Application of Learning/Cost Improvement Curves (NASA TM X-64968). NASA, Washington, DC (1975)Google Scholar
  25. 25.
    Steven, G.J.: The learning curve: from aircraft to spacecraft? Manag. Account. 77(5), 64–65 (1999)Google Scholar
  26. 26.
    Jarosewich, E.: Chemical analyses of meteorites at the Smithsonian Institution: an update. Meteorit. Planet. Sci. 41(9), 1381–1382 (2006)CrossRefGoogle Scholar
  27. 27.
    Nelson, M.L., Britt, D.T., Lebofsky, L.A.: Review of asteroid compositions. In: Lewis, J.S., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, pp. 493–522. University of Arizona Press, Tucson (1993)Google Scholar
  28. 28.
    Gerlach, C.L: Profitably Exploiting Near-Earth Object Resources. Washington, D.C. (2005)Google Scholar
  29. 29.
    Rivkin, A.S., Campins, H., Emery, J.P., Howell, E.S., Licandro, J., Takir, D., Vilas, F.: Astronomical Observations of Volatiles on Asteroids. In: Asteroids IV, pp. 65–87. University of Arizona Press, Tucson (2015)Google Scholar
  30. 30.
    Kargel, J.S.: Market value of asteroidal precious metals in an age of diminishing terrestrial resources. In: Johnson, S. W. (ed.) Engineering, Construction, and Operations in Space V, pp. 821–829. American Society of Civil Engineers, Albuquerque (1996)Google Scholar
  31. 31.
    de la Fuente Marcos, C., de la Fuentes Marcos, R.: Geometric characterization of the Arjuna orbital domain. Astron. Nachr. 336(1), 5–22 (2015)CrossRefGoogle Scholar
  32. 32.
    Bazzocchi, M.C.F., Emami, M.R.: Study of Arjuna-Type asteroids for low-thrust orbital transfer, J. Spacecr. Rocket., Article in Advance (2017)Google Scholar
  33. 33.
    de Ruiter, A.H, Damaren, C., Forbes, J.R.: Spacecraft Dynamics and Control: An Introduction. Wiley, New York (2013)Google Scholar
  34. 34.
    Schultz, B.B.: Levene’s test for relative variation,. Syst. Biol. 34(4), 449–456 (1985)CrossRefGoogle Scholar
  35. 35.
    Brown, M.B., Forsythe, A.B.: Robust tests for the equality of variances. J. Am. Stat. Assoc. 69(346), 364–367 (1974)CrossRefzbMATHGoogle Scholar
  36. 36.
    NASA: James Webb Space Telescope - Technical FAQ [Online]. Available: Accessed 15 Jan 2016 (2016)
  37. 37.
    Dick, S.J., Launius, R.D.: Societal Impact of Spaceflight. NASA, Washington, D.C. (2007)Google Scholar
  38. 38.
    NASA: Mars Science Laboratory/Curiosity: By the Numbers [Online]. Available: Accessed 15 Jan 2016 (2011)
  39. 39.
    Mommert, M., Hora, J.L., Farnocchia, D., Chesley, S.R., Vokrouhlický, D., Trilling, D.E., Mueller, M., Harris, A.W., Smith, H.A., Fazio, G.G.: Constraining the physical properties of near-Earth Object 2009 BD. Astrophys. J. 786(2), 148–126 (2015)CrossRefGoogle Scholar
  40. 40.
    JPL Small-Body Database Search Engine. NASA Jet Propulsion Laboratory, 20 May 2017. [Online]. Available: Accessed 20 May 2017

Copyright information

© American Astronautical Society 2018

Authors and Affiliations

  1. 1.Institute for Aerospace StudiesUniversity of TorontoTorontoCanada
  2. 2.Onboard Space Systems, Space Technology DivisionLuleå University of TechnologyKirunaSweden

Personalised recommendations