The Journal of the Astronautical Sciences

, Volume 62, Issue 4, pp 315–350 | Cite as

Maneuver Design Using Relative Orbital Elements

  • David A. SpencerEmail author
  • Thomas A. Lovell


Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit.


Orbital mechanics Relative motion Proximity operations 


  1. 1.
    Woffinden, D.C., Geller, D., Mosher, T., Kwong, J.: On-Orbit Satellite Rendezvous Inspection: A Concept Study and Design, Spaceflight Mechanics 2005. Adv. Astronaut. Sci. 120(1 & 2), 849–867 (2005)Google Scholar
  2. 2.
    Sabol, C., Burns, R., McLaughlin, C.A.: Satellite Formation Flying Design and Evolution. J. Spacecr. Rocket. 38(2), 270–278 (2001)CrossRefGoogle Scholar
  3. 3.
    Fasano, G., D’Errico, M.: Design of Satellite Formations for Interferometric and Bistatic SAR. In: Institute of Electrical and Electronics Engineers Aerospace Conference Paper No. 1064 (2007)Google Scholar
  4. 4.
    Carreau, M.: NASA Approves Orbital Sciences for ISS Commercial Resupply Missions, Aviation Week and Space Technology, October 1 (2013)Google Scholar
  5. 5.
    Clark, S.: Satellite In-Space Servicing Demo Mission a Success. Spaceflight Now, July 23 (2007)Google Scholar
  6. 6.
    Malik, T.: Prototype Satellites Demonstrate In-Orbit Refueling., April 4 (2007)Google Scholar
  7. 7.
    Gaylor, D.E., Barbee, B.W.: Algorithms for Safe Spacecraft Proximity Operations, Conference Proceedings, Space Flight Mechanics 2007. Adv. Astronaut. Sci. 127(1 & 2), 133–152 (2007)Google Scholar
  8. 8.
    Holzinger, M., DiMatteo, J., Schwartz, J., Milam, M.: Passively Safe Receding Horizon Control for Satellite Proximity Operations. In: Proceedings of the 47 th IEEE Conference on Decision and Control. Cancun, Mexico (2008)Google Scholar
  9. 9.
    Breger, L., How, J.P.: Safe Trajectories for Autonomous Rendezvous of Spacecraft. J. Guid. Control. Dyn. 31(5), 1478–1489 (2008)CrossRefGoogle Scholar
  10. 10.
    Roger, A.B., McInnes, C.R.: Safety Constrained Free-Flyer Path Planning at the International Space Station. J. Guid. Control. Dyn. 23(6), 971–979 (2000)CrossRefGoogle Scholar
  11. 11.
    Hill, G. W.: Researches in the Lunar Theory. Am. J. Math. 1(1), 5–26 (1878)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tschauner, J., Hempel, P.: Rendezvous zu einem in elliptischer Bahn umlaufenden Ziel. Astronautica Acta 11(2), 104–109 (1965)zbMATHGoogle Scholar
  13. 13.
    Clohessy, W.H., Wiltshire, R.S.: Terminal Guidance System for Satellite Rendezvous. J. Aerosol Sci. 27(9), 653–658 (1960)CrossRefzbMATHGoogle Scholar
  14. 14.
    Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. AIAA Reston, Virginia (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    D’Amico, S., Montenbruck, O.: Proximity Operations of Formation-Flying Spacecraft Using an Eccentricity/Inclination Vector Separation. Journal of Guidance, Control, and Dynamics 29(3), 554–563 (2006)CrossRefGoogle Scholar
  16. 16.
    Han, C., Yin, J.: Formation Design in Elliptical Orbit Using Relative Orbital Elements, vol. 77 (2012)Google Scholar
  17. 17.
    Lovell, T.A., Spencer, D.A.: Relative Orbital Elements Formulation Based Upon the Clohessy-Wiltshire Equations. J. Astronaut. Sci. (2015). doi: 10.1007/s40295-014-0029-6 Google Scholar
  18. 18.
    Lovell, T.A., Tragesser, S.G.: Guidance for Relative Motion of Low Earth Orbit Spacecraft Based on Relative Orbit Elements, AIAA Paper (2004)Google Scholar
  19. 19.
    Lovell, T.A., Tragesser, S.G., Tollefson, M.V.: A Practical Guidance Methodology for Relative Motion of LEO Spacecraft Based on the Clohessy-Wiltshire Equations, American Astronautical Society Paper (2004)Google Scholar
  20. 20.
    Bevilacqua, R., Lovell, T.A.: Analytical guidance for spacecraft relative motion under constant thrust using relative orbit elements. Acta Astronautica 102, 47–61 (2014)CrossRefGoogle Scholar
  21. 21.
    Phillips, M.: Spacecraft Collision Probability Estimation for Rendezvous and Proximity Operations, Master of Science Thesis. Utah State University, Logan Utah (2012)Google Scholar
  22. 22.
    Aubin, B.S.: Optimization of Relative Orbit Transfers Via Particle Swarm and Primer Vector Theory, Master of Science Thesis. University of Illinois at Urbana-Champaign (2011)Google Scholar
  23. 23.
    Schwartz, J., Krenzke, T., Hur-Diaz, S., Ruschmann, M., Schmidt, J.: Error-Contracting Impulse Controller for Satellite Cluster Flight Formation. In: Paper AIAA 2013-4541, presented at the AIAA Guidance, Navigation, and Control Conference, Boston, MA, pp 19–22 (2013)Google Scholar
  24. 24.
    Schwartz, J., Krenzke, T., Hur-Diaz, S., Ruschmann, M., Schmidt, J.: The Flocking Controller: A Novel Cluster Control Strategy for Space Vehicles. In: Paper AIAA 2013-4543, presented at the AIAA Guidance, Navigation, and Control Conference, Boston, MA, pp 19–22 (2013)Google Scholar
  25. 25.
    Chait, S., Spencer, D.A.: Prox-1: Automated Trajectory Control for On-Orbit Inspection. In: AAS 14-066, 37 th Annual American Astronautical Society Guidance and Control Conference (2014)Google Scholar
  26. 26.
    Schulte, P.Z., Spencer, D.A.: Development of an Integrated Spacecraft Guidance, Navigation, and Control Subsystem for Automated Proximity Operations, IAC-14-C1.6.4x21108. In: 65 th International Astronautical Congress, Toronto (2014)Google Scholar
  27. 27.
    Vaddi, S.S., Alfriend, K.T., Vadali, S.R., Sengupta, P.: Formation Establishment and Reconfiguration Using Impulsive Control. J. Guid. Control. Dyn. 28(2), 262–268 (2005)CrossRefGoogle Scholar
  28. 28.
    Gaias, G., D’Amico, S., Ardaens, J.-S.: Generalized Multi-Impulsive Maneuvers for Optimum Spacecraft Rendezvous, International Journal of Space Science and Engineering, vol. 3 (2015)Google Scholar
  29. 29.
    Gaias, G., D’Amico, S.: Impulsive Maneuvers for Formation Reconfiguration using Relative Orbital Elements. J. Guid. Control. Dyn. (2015). doi: 10.2514/1.G000189 Google Scholar
  30. 30.
    Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 2nd ed. Microcosm Press, El Segundo, California (2004)zbMATHGoogle Scholar
  31. 31.
    Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, American Institute of Aeronautics and Astronautics, Inc., New York (1987)Google Scholar

Copyright information

© American Astronautical Society 2015

Authors and Affiliations

  1. 1.Guggenheim School of Aerospace EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Space Vehicles DirectorateAir Force Research LaboratoryKirtlandUSA

Personalised recommendations