The Journal of the Astronautical Sciences

, Volume 61, Issue 2, pp 170–197 | Cite as

Enhanced Visualization and Autonomous Extraction of Poincaré Map Topology

  • Wayne Schlei
  • Kathleen C. Howell
  • Xavier Tricoche
  • Christoph Garth
Article
  • 180 Downloads

Abstract

Poincaré maps supply vital descriptions of dynamical behavior in spacecraft trajectory analysis, but the puncture plot, the standard display method for maps, typically requires significant external effort to extract topology. This investigation presents adaptations of topology-based methods to compute map structures in multi-body dynamical environments. In particular, a scalar field visualization technique enhances the contrast between quasi-periodic and chaotic regimes. Also, an autonomous method is outlined to extract map topology in the planar circular restricted three-body problem. The resulting topological skeleton supplies a network of design options through the interconnectivity of orbital structures.

Keywords

Poincaré maps Topology Visualization Orbit convolution Quasi-periodicity Chaos 

Notes

Acknowledgments

The authors are grateful to Rune and Barbara Eliasen for their support in funding the Rune and Barbara Eliasen Visualization Laboratory at Purdue University. Also, the authors wish to acknowledge Visualization Sciences Group (the developers of Avizo®) for programming and implementation assistance with the visualization tools employed in this work. A significant portion of this research is supported as part of the NSF CAREER Program Award #1150000: Efficient Structural Analysis of Multivariate Fields for Scalable Visualizations. This effort is also supported by the Computer Science Department and the School of Aeronautics and Astronautics at Purdue University.

References

  1. 1.
    Anderson, R.L., Lo, M.W.: A dynamical systems analysis of resonant flybys: Ballistic case. J. Astronaut. Sci. 58(2), 167–194 (2011)CrossRefGoogle Scholar
  2. 2.
    Cabral, B., Leedom, L.C.: Imaging Vector Fields Using Line Integral Convolution, pp 263–270. ACM, New York, NY, USA (1993)Google Scholar
  3. 3.
    Danby, J.M.: Fundamentals of Celestial Mechanics, 2nd edn. Willmann-Bell, Inc., Richmond, Virginia (1992)Google Scholar
  4. 4.
    Demeyer, J., Gurfil, P.: Transfer to distant retrograde orbits using manifold theory. J. Guid. Control Dyn. 30, 5 (2007)CrossRefGoogle Scholar
  5. 5.
    Doedel, E.J., Romanov, V.A., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Galan-Vioque, J., Vanderbauwhede, A.: Elemental periodic orbits associated with the libration points in the circular restricted 3-body problem. Int. J. Bifurcation Chaos 17(8), 2625–2677 (2007)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    England, J., Krauskopf, B., Osinga, H.: Computing one-dimensional global manifolds of Poincaré maps by continuation. SIAM J. Appl. Dyn. Syst. 4(4), 1008–1041 (2005)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York. New York (1983)Google Scholar
  9. 9.
    Haapala, A., Howell, K.C.: Trajectory design strategies applied to temporary comet capture including Poincaré maps and invariant manifolds. Celest. Mech. Dyn. Astron. 116(3), 299–323 (2013)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transistions in celestial mechanics. Chaos 10 (2), 427–469 (2000)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, 2nd edn. Springer-Verlag, New York, New York (1992)CrossRefMATHGoogle Scholar
  12. 12.
    Lo, M.W., Anderson, R.L., Lam, T., Whiffen, G.: The role of invariant manifolds in low thrust trajectory design (Part III). In: AAS/AIAA Spaceflight Dynamics Conference. Tampa, Florida. Paper AAS 06-190 (2006)Google Scholar
  13. 13.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)Google Scholar
  14. 14.
    Sanderson, A.R., Chen, G., Tricoche, X., Pugmire, D., Kruger, S., Breslau, J.: Analysis of recurrent patterns in toroidal magnetic fields. In: Visualization Information Visualization 2010, IEEE Transactions on Visualization and Computer Graphics, vol. 16 (2010)Google Scholar
  15. 15.
    Schlei, W.: An Application of Visual Analytics to Spacecraft Trajectory Design. M.S. Thesis, School of Aeronautics and Astronautics, Purdue University. West Lafayette, Indiana (2011)Google Scholar
  16. 16.
    Shoemake, K.: Rational approximation. In: Paeth, A.W. (ed.) Graphics Gems V, vol. 25–32. Academic Press, San Diego (1995)Google Scholar
  17. 17.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Perseus Books Publishing, Cambridge (1994)Google Scholar
  18. 18.
    Thrill, M.: A more precise rounding algorithm for rational numbers. Computing 82(2–3), 189–198 (2008)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Tricoche, X., Garth, C., Sanderson, A.: Visualization of topological structures in area-preserving maps. IEEE Trans. Vis. Comput. Graph. 17(12), 1765–1774 (2011)CrossRefGoogle Scholar
  20. 20.
    Vaquero, M., Howell, K.C.: Leveraging resonant orbit manifolds to design transfers between libration point orbits in multi-body regimes. In: 23rd AAS/AIAA Space Flight Mechanics Meeting Kauai Hawaii (2013)Google Scholar
  21. 21.
    Vaquero, M., Howell, K.C.: Transfer design exploiting resonant orbits and manifolds in the saturn-titan system. J. Spacecr. Rocket. 50(5), 1069–1085 (2013)CrossRefGoogle Scholar
  22. 22.
    Villac, B.F., Scheeres, D.J.: Escaping trajectories in the hill three-body problem and applications. J.Guid. Control, Dyn. 26(2), 224–232 (2003)CrossRefGoogle Scholar
  23. 23.
    Yip, K.M.K.: KAM: A System for Intelligently Guiding Numerical Experimentation by Computer. The MIT Press (1991)Google Scholar

Copyright information

© American Astronautical Society 2015

Authors and Affiliations

  • Wayne Schlei
    • 1
  • Kathleen C. Howell
    • 1
  • Xavier Tricoche
    • 2
  • Christoph Garth
    • 3
  1. 1.Armstrong HallPurdue UniversityWest LafayetteUSA
  2. 2.Lawson HallPurdue UniversityWest LafayetteUSA
  3. 3.University of KaiserslauternKaiserslauternGermany

Personalised recommendations