Advertisement

The Journal of the Astronautical Sciences

, Volume 62, Issue 1, pp 44–72 | Cite as

Trajectory Design for MoonRise: A Proposed Lunar South Pole Aitken Basin Sample Return Mission

  • Jeffrey S. Parker
  • Timothy P. McElrath
  • Rodney L. Anderson
  • Theodore H. Sweetser
Article
  • 189 Downloads

Abstract

This paper presents the mission design for the proposed MoonRise New Frontiers mission: a lunar far side lander and return vehicle, with an accompanying communication satellite. Both vehicles are launched together, but fly separate low-energy transfers to the Moon. The communication satellite enters lunar orbit immediately upon arrival at the Moon, whereas the lander enters a staging orbit about the lunar Lagrange points. The lander descends and touches down on the surface 17 days after the communication satellite enters orbit. The lander remains on the surface for nearly two weeks before lifting off and returning to Earth via a low-energy return.

Keywords

MoonRise Trajectory design Lunar mission Lunar sample return Low-energy transfers New frontiers 

Notes

Acknowledgments

This work would not be possible without many people who contributed to the proposed 2009 New Frontiers MoonRise concept design, including the PI Dr. Bradley Jolliff, the capture lead Leon Alkalai, and the team members within the Jet Propulsion Laboratory, Lockheed Martin, ISRO, CSA, DLR, and elsewhere. Many people contributed to various elements of the proposed trajectory design, including Gene Bonfiglio, Min-Kun Chung, Sara Hatch, Dan Johnston, Stuart Kerridge, Ralph Roncoli, Guru Singh, Evgeniy Sklyanskiy, and Roby Wilson.

The research presented in this paper has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References

  1. 1.
    National Research Council: New Frontiers in the Solar System, an Integrated Exploration Strategy. The National Academies Press, Washington, DC (2011)Google Scholar
  2. 2.
    Committee on the Planetary Science Decadal Survey: National Research Council, Vision and Voyages for Planetary Science in the Decade 2013-2022. The National Academies Press, Washington, DC (2011)Google Scholar
  3. 3.
    Gomes, R., Levison, H. F., Tsiganis, K., Morbidelli, A.: Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435 (7041), 466–469 (2005)CrossRefGoogle Scholar
  4. 4.
    Alkalai, L., Solish, B., Elliott, J. O., Mueller, J., McElrath, T., Parker, J: ORION/MoonRise: A Human & Robotic Sample Return Mission Concept from the South Pole-Aitken Basin. Annual Meeting of the Lunar Exploration Analysis Group, Greenbelt, Maryland 22–24 (2012)Google Scholar
  5. 5.
    Jolliff, B. L., Shearer, C. K., Papanastassiou, D. A., Alkalai, L., Team, M: MoonRise: South Pole-Aitken Basin Sample Return Mission for Solar System Science. Annual Meeting of the Lunar Exploration Analysis Group, Washington, DC, 14–16 (2010)Google Scholar
  6. 6.
    Jolliff, B. L., Alkalai, L., Pieters, C. M., Head, J. W., Papanastassiou, D. A., Bierhaus, E. B.: Sampling the South Pole-Aitken Basin: Objectives and Site Selection Criteria. Lunar and Planetary Institute Science Conference Abstracts, Vol. 41 of, Lunar and Planetary Inst. Technical Report p. 2450 (2010)Google Scholar
  7. 7.
    Alkalai, L., Jolliff, B., Papanastassiou, D.: MoonRise: Sample Return from the South Pole – Aitken Basin. International Planetary Probe Workshop, Barcelona, Spain, pp. 14–18 (2010)Google Scholar
  8. 8.
    Alkalai, L., Solish, B., Elliott, J. O., McElrath, T., Mueller, J., Parker, J.: ORION/MoonRise: A Proposed Human & Robotic Sample Return Mission from the Lunar South Pole-Aitken Basin. IEEE Aerospace Conference,Big Sky, Montana (2013)Google Scholar
  9. 9.
    Duke, M.: MoonRise: Sample Return from the South Pole-Aitken Basin, New Frontiers Concept Study Report (CSR), Colorado School of Mines (2005)Google Scholar
  10. 10.
    Jolliff, B. L.: MoonRise: Sample Return from the South Pole-Aitken Basin, New Frontiers Concept Study Report (CSR). Washington University, St.Louis (2010)Google Scholar
  11. 11.
    Chung, M. J., Hatch, S. J., Kangas, J. A., Long, S. M., Roncoli, R. B., Sweetser, T. H.: Trans-Lunar Cruise Trajectory Design of GRAIL (Gravity Recovery and Interior Laboratory) Mission. AIAA/AAS Astrodynamics Specialist Conference, No. AIAA 2010-8384, Toronto, Ontario, Canada, AIAA/AAS, August 2–5 (2010)Google Scholar
  12. 12.
    Anderson, R. L., Parker, J. S.: A survey of ballistic transfers to the lunar surface. J. Guid. Control. Dyn. 35, 1256–1267 (2012)CrossRefGoogle Scholar
  13. 13.
    Parker, J.S., Anderson, R.L.: Low-Energy Lunar Trajectory Design, DESCANSO Deep Space Communication and Navigation Series. John Wiley and Sons, Hoboken, New Jersey (2014)Google Scholar
  14. 14.
    Parker, J. S., Anderson, R. L., Peterson, A.: A Survey of Ballistic Transfers to Low Lunar Orbit, Proceedings of the AAS/AIAA Spaceflight Mechanics Meetings held 13-17 Feb 2011, New Orleans, Louisiana, Paper AAS 11-277. In: Jah, M. K., Guo, Y., Bowes, A. L., Lai, P. C. (eds.) Vol. 140 of Advances in Astronautical Sciences, San Diego, CA, AAS/AIAA, Univelt Inc (2011)Google Scholar
  15. 15.
    Parker, J. S.: Low-Energy Ballistic Lunar Transfers. PhD thesis, University of Colorado, Boulder, Colorado (2007)Google Scholar
  16. 16.
    Parker, J. S., Born, G. H.: Direct Lunar Halo Orbit Transfers. J. Astronaut. Sci., Vol. 56, Oct–Dec (2008)Google Scholar
  17. 17.
    Nozette, S., Rustan, P., Pleasance, L. P., Kordas, J. F., Lewis, I. T., Park, H. S., Priest, R. E., Horan, D. M., Regeon, P., Lichtenberg, C. L., Shoemaker, E. M., Eliason, E. M., McEwen, A. S., Robinson, M. S., Spudis, P. D., Acton, C. H., Buratti, B. J., Duxbury, T. C., Baker, D. N., Jakosky, B. M., Blamont, J. E., Corson, M. P., Resnick, J. H., Rollins, C. J., Davies, M. E., Lucey, P. G., Malaret, E., Massie, M. A., Pieters, C. M., Reisse, R. A., Simpson, R. A., Smith, D. E., Sorenson, T. C., Breugge, R. W. V., Zuber, M. T.: The clementine mission to the moon: scientific overview. Science 266(16), 1835–1839 (1994)CrossRefGoogle Scholar
  18. 18.
    Goswami, J. N., Annadurai, M.: Chandrayaan-1: India’s first planetary science mission to the moon. Current Science; Special Section: Chandrayaan-1 96 (25), 486–491 (2009)Google Scholar
  19. 19.
    Foing, B.H., Racca, G.R.: The ESA smart-1 mission to the moon with solar electric propulsion. Adv. Space Res. 23(11), 1865–1870 (1999)CrossRefGoogle Scholar
  20. 20.
    Uesugi, K.: Japanese first double Lunar swingby mission ‘HITEN’. Acta Astronaut. 25(7), 347–355 (1991)CrossRefGoogle Scholar
  21. 21.
    Sweetser, T.H., Broschart, S., Angelopoulos, V., Whiffen, G., Folta, D., Chung, M., Hatch, S., Woodard, M.: ARTEMIS Mission design,. Space Sci. Rev. 165(1–4), 27–57 (2011)CrossRefGoogle Scholar
  22. 22.
    Miller, J.K., Belbruno, E.A.: A Method for the Construction of a Lunar Transfer Trajectory Using Ballistic Capture. In: Soldner, J.K., Misra, R.K., Sackett, L.L., Holdaway, R. (eds.) A Method for the Construction of a Lunar Transfer Trajectory Using Ballistic Capture, Proceedings of the 1st AAS/AIAA Spaceflight Mechanics Meeting held 11-13 February 1991, Houston, Texas, Paper AAS 91-100, Vol. 75 of Advances in Astronautical Sciences, San Diego, CA, AAS/AIAA, Univelt Inc., pp. 97–109 (1991)Google Scholar
  23. 23.
    Belbruno, E.A., Miller, J.: A Ballistic Lunar Capture Trajectory for the Japanese Spacecraft Hiten, Tech. Rep. IOM 312/90.4-1731-EAB, JPL, California Institute of Technology (1990)Google Scholar

Copyright information

© American Astronautical Society 2015

Authors and Affiliations

  • Jeffrey S. Parker
    • 1
  • Timothy P. McElrath
    • 2
  • Rodney L. Anderson
    • 2
  • Theodore H. Sweetser
    • 2
  1. 1.Colorado Center for Astrodynamics Research, 431 UCBUniversity of ColoradoBoulderUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations